找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh�user Boston 2002 Algebraic Numb

[复制链接]
查看: 18126|回复: 48
发表于 2025-3-21 19:16:26 | 显示全部楼层 |阅读模式
书目名称Diophantine Equations and Power Integral Bases
副标题New Computational Me
编辑István Gaál
视频video
图书封面Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh�user Boston 2002 Algebraic Numb
描述This monograph investigates algorithms for determining power integral bases in algebraic number fields. It introduces the best-known methods for solving several types of diophantine equations using Baker-type estimates, reduction methods, and enumeration algorithms. Particular emphasis is placed on properties of number fields and new applications. The text is illustrated with several tables of various number fields, including their data on power integral bases. Good resource for solving classical types of diophantine equations. Aimed at advanced undergraduate/graduate students and researchers.
出版日期Book 20021st edition
关键词Algebraic Number Theory; Algorithmic Analysis; Finite; Mathematics of Computing; algebra; algorithms; calc
版次1
doihttps://doi.org/10.1007/978-1-4612-0085-7
isbn_ebook978-1-4612-0085-7
copyrightBirkh�user Boston 2002
The information of publication is updating

书目名称Diophantine Equations and Power Integral Bases影响因子(影响力)




书目名称Diophantine Equations and Power Integral Bases影响因子(影响力)学科排名




书目名称Diophantine Equations and Power Integral Bases网络公开度




书目名称Diophantine Equations and Power Integral Bases网络公开度学科排名




书目名称Diophantine Equations and Power Integral Bases被引频次




书目名称Diophantine Equations and Power Integral Bases被引频次学科排名




书目名称Diophantine Equations and Power Integral Bases年度引用




书目名称Diophantine Equations and Power Integral Bases年度引用学科排名




书目名称Diophantine Equations and Power Integral Bases读者反馈




书目名称Diophantine Equations and Power Integral Bases读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:39:06 | 显示全部楼层
Robert Fisch,Janko Gravner,David Griffeathcase 1, α,...,α. is an integral basis of ., called a .. Our main task is to develop algorithms for determining all generators α of power integral bases. As we shall see, this algorithmic problem is satisfactorily solved for lower degree number fields (especially for cubic and quartic fields) and the
发表于 2025-3-22 02:41:00 | 显示全部楼层
发表于 2025-3-22 05:17:28 | 显示全部楼层
Robert Fisch,Janko Gravner,David Griffeathl see in the following chapters, various types of Thue equations play an essential role in the resolution of index form equations [Ga96b]. We summarize the methods for the resolution of these equations in this chapter. We shall consider Thue equations (Section 3.1), inhomogeneous Thue equations (Sec
发表于 2025-3-22 11:14:23 | 显示全部楼层
Kenneth S. Alexander,Joseph C. Watkinsrties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sect
发表于 2025-3-22 13:02:52 | 显示全部楼层
Spatial Linkages of the Chinese Economybles. The resolution of such an equation can yield a difficult problem. The main goal of this Chapter is to point out that in the quartic case the index form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Section 6.1). This means that in fact the index form equ
发表于 2025-3-22 17:13:41 | 显示全部楼层
发表于 2025-3-23 00:27:37 | 显示全部楼层
Visualizing Classic Chinese Literaturesituation. The algorithms for determining generators of relative power integral bases will be applied for finding generators of integral bases in higher degree fields having subfields. It is easy to see that if an element generates a power integral basis, then it also generates a relative power inte
发表于 2025-3-23 03:33:57 | 显示全部楼层
发表于 2025-3-23 07:05:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 04:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表