找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Diophantine Approximation and Dirichlet Series; Hervé Queffélec,Martine Queffélec Book 20131st edition Hindustan Book Agency (India) 2013

[复制链接]
查看: 44463|回复: 39
发表于 2025-3-21 19:49:13 | 显示全部楼层 |阅读模式
书目名称Diophantine Approximation and Dirichlet Series
编辑Hervé Queffélec,Martine Queffélec
视频video
图书封面Titlebook: Diophantine Approximation and Dirichlet Series;  Hervé Queffélec,Martine Queffélec Book 20131st edition Hindustan Book Agency (India) 2013
描述This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of analytic functions in a half-plane. Finally, chapter seven presents the Bagchi-Voronin universality theorems, for the zeta function, and r-tuples of L functions. The proofs, which
出版日期Book 20131st edition
版次1
doihttps://doi.org/10.1007/978-93-86279-61-3
isbn_ebook978-93-86279-61-3
copyrightHindustan Book Agency (India) 2013
The information of publication is updating

书目名称Diophantine Approximation and Dirichlet Series影响因子(影响力)




书目名称Diophantine Approximation and Dirichlet Series影响因子(影响力)学科排名




书目名称Diophantine Approximation and Dirichlet Series网络公开度




书目名称Diophantine Approximation and Dirichlet Series网络公开度学科排名




书目名称Diophantine Approximation and Dirichlet Series被引频次




书目名称Diophantine Approximation and Dirichlet Series被引频次学科排名




书目名称Diophantine Approximation and Dirichlet Series年度引用




书目名称Diophantine Approximation and Dirichlet Series年度引用学科排名




书目名称Diophantine Approximation and Dirichlet Series读者反馈




书目名称Diophantine Approximation and Dirichlet Series读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:26:50 | 显示全部楼层
发表于 2025-3-22 02:38:04 | 显示全部楼层
发表于 2025-3-22 06:48:30 | 显示全部楼层
发表于 2025-3-22 09:20:00 | 显示全部楼层
发表于 2025-3-22 12:52:38 | 显示全部楼层
发表于 2025-3-22 17:49:01 | 显示全部楼层
https://doi.org/10.1007/978-3-031-55008-9robabilistic methods have a great flexibility, and are nearly compulsory in some questions, even if the initial proof of the Bohnenblust-Hille theorem, to be proved in the last section, made no use of such methods.
发表于 2025-3-23 00:31:12 | 显示全部楼层
发表于 2025-3-23 02:26:18 | 显示全部楼层
发表于 2025-3-23 09:03:47 | 显示全部楼层
Probabilistic methods for Dirichlet series,h is fairly well-known in harmonic analysis, but will have a specific aspect, due to the Bohr point of view on Dirichlet series. We tried to keep the presentation as self-contained as possible, since the subject may be not completely familiar to some number-theoretists. Let us emphasize that those p
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-30 12:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表