找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Diophantine Approximation; Wolfgang M. Schmidt Book 1980 Springer-Verlag Berlin Heidelberg 1980 Diophantine approximation.Diophantische Ap

[复制链接]
楼主: Callow
发表于 2025-3-23 10:13:18 | 显示全部楼层
Approximation to Irrational Numbers by Rationals,Given a real number ., let [.], the . of ., denote the greatest integer ≤ ., and let {.} = . − [.]. Then {.} is the . of ., and satisfies 0 ≤ {.} < 1. Also, let ‖.‖ denote the distance from . to the nearest integer. Then always 0 ≤ ‖.‖ ≤ 1/2.
发表于 2025-3-23 15:17:32 | 显示全部楼层
Simultaneous Approximation,...,...,... n . Q > 1 .. . q,p.,...,P..
发表于 2025-3-23 20:50:39 | 显示全部楼层
,Roth’s Theorem, . 1A (Liouville (1844)). . . . d. . c(.) > 0 . . . . . ..
发表于 2025-3-23 23:10:01 | 显示全部楼层
Approximation By Algebraic Numbers,In the first chapters we studied approximation to real numbers by rationals. We now take up approximation to real numbers . algebraic numbers. This is quite different from the questions e.g. considered in Chapter V on approximation . algebraic numbers by rationals.
发表于 2025-3-24 03:44:07 | 显示全部楼层
发表于 2025-3-24 06:30:56 | 显示全部楼层
https://doi.org/10.1007/978-981-10-6493-7.). Next, White picks a compact interval W. ⊂ B. of length ℓ(W.) = αℓ(B.). Then Black picks a compact interval B. ⊂ W. of length ℓ(B.) = βℓ(W.), etc. In this way, a nested sequence of compact intervals . is generated, with lengths . It is clear that . consists of a single point.
发表于 2025-3-24 12:44:36 | 显示全部楼层
https://doi.org/10.1007/978-981-10-6493-7me of K. (By the volume of K we mean the Riemann integral of the characteristic function of K. It can be proved that every convex body has a volume in this sense. Alternatively, the existence of the volume of K may be added as a hypothesis.)
发表于 2025-3-24 18:40:39 | 显示全部楼层
Complex Landscapes of Spatial Interactionmber field generated by ..,...,.. and let 1,..,...,..,...,.. be a basis of this field. We saw in Theorem 4A of Chapter II that ..,...,.. are badly approximable, so that . where q.,...,q., p are rational integers and where q = max(|q.|,...,|q.|) ≠ 0. Taking q. = ... = q. = 0, we have .. . 1,..,...,..
发表于 2025-3-24 20:36:13 | 显示全部楼层
发表于 2025-3-25 03:07:05 | 显示全部楼层
https://doi.org/10.1007/978-3-540-38645-2Diophantine approximation; Diophantische Approximation; Factor; Microsoft Access; Volume; algebra; approxi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 20:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表