找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver

[复制链接]
查看: 44157|回复: 68
发表于 2025-3-21 16:44:16 | 显示全部楼层 |阅读模式
书目名称Diophantine Approximation
副标题Festschrift for Wolf
编辑Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic
视频videohttp://file.papertrans.cn/281/280530/280530.mp4
概述Current information on important branches of diophantine approximation from leading experts in the field.Diverse methods are presented.The influence of diophantine approximation in other fields, e.g.
丛书名称Developments in Mathematics
图书封面Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver
描述This volume contains 22 research and survey papers on recent developments in the field of diophantine approximation. The first article by Hans Peter Schlickewei is devoted to the scientific work of Wolfgang Schmidt. Further contributions deal with the subspace theorem and its applications to diophantine equations and to the study of linear recurring sequences. The articles are either in the spirit of more classical diophantine analysis or of geometric or combinatorial flavor. In particular, estimates for the number of solutions of diophantine equations as well as results concerning congruences and polynomials are established. Furthermore, the volume contains transcendence results for special functions and contributions to metric diophantine approximation and to discrepancy theory. The articles are based on lectures given at a conference at the Erwin Schr6dinger Institute in Vienna in 2003, in which many leading experts in the field of diophantine approximation participated. The editors are very grateful to the Erwin Schr6dinger Institute and to the FWF (Austrian Science Fund) for the financial support and they express their particular thanks to Springer-Verlag for the excellent coo
出版日期Conference proceedings 2008
关键词Algebra; Diophantine; Diophantine approximation; Festschrift; Number Theory; Tichy; Wolfgang Schmidt; conti
版次1
doihttps://doi.org/10.1007/978-3-211-74280-8
isbn_softcover978-3-211-99909-7
isbn_ebook978-3-211-74280-8Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer-Verlag Vienna 2008
The information of publication is updating

书目名称Diophantine Approximation影响因子(影响力)




书目名称Diophantine Approximation影响因子(影响力)学科排名




书目名称Diophantine Approximation网络公开度




书目名称Diophantine Approximation网络公开度学科排名




书目名称Diophantine Approximation被引频次




书目名称Diophantine Approximation被引频次学科排名




书目名称Diophantine Approximation年度引用




书目名称Diophantine Approximation年度引用学科排名




书目名称Diophantine Approximation读者反馈




书目名称Diophantine Approximation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:56:34 | 显示全部楼层
发表于 2025-3-22 04:08:32 | 显示全部楼层
Hans Peter Schlickewei,Klaus Schmidt,Robert F. TicCurrent information on important branches of diophantine approximation from leading experts in the field.Diverse methods are presented.The influence of diophantine approximation in other fields, e.g.
发表于 2025-3-22 07:40:51 | 显示全部楼层
Developments in Mathematicshttp://image.papertrans.cn/e/image/280530.jpg
发表于 2025-3-22 10:04:31 | 显示全部楼层
Introduction: Urban Developmentied since 1957, beginning with Danicic [.]. Given an integer . ≥ 2. we seek a number . having the following property, for every ∈ > 0 and every pair α = (α., ... α.), β = (β.,..., β.) in ℝ.: . > C., 1 ≤ . ≤ .
发表于 2025-3-22 13:03:46 | 显示全部楼层
Introduction: Urban Developmentsearch paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.
发表于 2025-3-22 17:11:19 | 显示全部楼层
发表于 2025-3-23 00:31:50 | 显示全部楼层
Adil Mohammed Khan,Ishrat Islam L.-discrepancy . where for every . = (y.,..., . .) ∈ . ., the local discrepancy . is given by . Here . is a rectangular box of volume vol . y1... . ., and #(.) denotes the number of points of a set ., counted with multiplicity.
发表于 2025-3-23 05:08:07 | 显示全部楼层
Introduction: Regional Resources 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio
发表于 2025-3-23 07:12:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-20 12:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表