找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dimensionality Reduction of Hyperspectral Imagery; Arati Paul,Nabendu Chaki Book 2024 The Editor(s) (if applicable) and The Author(s), und

[复制链接]
查看: 54446|回复: 42
发表于 2025-3-21 17:55:05 | 显示全部楼层 |阅读模式
书目名称Dimensionality Reduction of Hyperspectral Imagery
编辑Arati Paul,Nabendu Chaki
视频video
概述Presents a data driven approach for dimensionality reduction (DR).Discusses the effect of spatial dimension and noise in the context of DR of hyperspectral imagery (HSI).Includes an optimization based
图书封面Titlebook: Dimensionality Reduction of Hyperspectral Imagery;  Arati Paul,Nabendu Chaki Book 2024 The Editor(s) (if applicable) and The Author(s), und
描述This book provides information about different types of dimensionality reduction (DR) methods and their effectiveness in hyperspectral data processing. The authors first explain how hyperspectral imagery (HSI) plays an important role in remote sensing due to its high spectral resolution that enables better identification of different materials on the earth’s surface. The authors go on to describe potential challenges due to HSI being acquired in hundreds of narrow and contiguous bands, represented as a 3-dimensional image cube, often causing the bands to contain information redundancy. They then show how processing a large number of bands adds challenges in terms of computation complexity that reduces efficiency. The authors then present how DR is an essential step in hyperspectral data analysis to solve these issues. Overall, the book helps readers understand the DR processes and its impact in effective HSI analysis..
出版日期Book 2024
关键词Dimensionality reduction; Hyperspectral image; Feature selection; Feature extraction; Band optimization;
版次1
doihttps://doi.org/10.1007/978-3-031-42667-4
isbn_softcover978-3-031-42669-8
isbn_ebook978-3-031-42667-4
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Dimensionality Reduction of Hyperspectral Imagery影响因子(影响力)




书目名称Dimensionality Reduction of Hyperspectral Imagery影响因子(影响力)学科排名




书目名称Dimensionality Reduction of Hyperspectral Imagery网络公开度




书目名称Dimensionality Reduction of Hyperspectral Imagery网络公开度学科排名




书目名称Dimensionality Reduction of Hyperspectral Imagery被引频次




书目名称Dimensionality Reduction of Hyperspectral Imagery被引频次学科排名




书目名称Dimensionality Reduction of Hyperspectral Imagery年度引用




书目名称Dimensionality Reduction of Hyperspectral Imagery年度引用学科排名




书目名称Dimensionality Reduction of Hyperspectral Imagery读者反馈




书目名称Dimensionality Reduction of Hyperspectral Imagery读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:37 | 显示全部楼层
Dimensionality Reduction: State of the Art,most discriminating characteristics, and therefore, the physical relevance of the selected bands is maintained. This chapter discusses the state-of-the-art methods of dimensionality reduction of HSI. Specific gap areas are also analysed, and accordingly, improved methodologies are given in subsequen
发表于 2025-3-22 04:18:49 | 显示全部楼层
发表于 2025-3-22 08:22:23 | 显示全部楼层
发表于 2025-3-22 09:39:05 | 显示全部楼层
Data-Driven Approach for Hyperspectral Band Selection,en band selection (BS) approach employs multi-featured analysis and signal-to-noise-ratio (SNR)-based band prioritisation for selecting discriminating bands. The signal quantisation process is used in the supervised data-driven approach for distinctly identifying each class signature pattern using a
发表于 2025-3-22 14:25:32 | 显示全部楼层
Concluding Remarks and Way Forward,ion time. The effect of noise is also analysed for optimisation and ranking-based band selection (BS) methods. The data-driven approaches for band selection show significant advantage as they do not depend on user perception to select the required number of discriminating bands from the data. At the
发表于 2025-3-22 18:28:56 | 显示全部楼层
发表于 2025-3-22 22:28:57 | 显示全部楼层
发表于 2025-3-23 01:37:40 | 显示全部楼层
Jochen Seemann,Jürgen Wolff von Gudenbergmost discriminating characteristics, and therefore, the physical relevance of the selected bands is maintained. This chapter discusses the state-of-the-art methods of dimensionality reduction of HSI. Specific gap areas are also analysed, and accordingly, improved methodologies are given in subsequen
发表于 2025-3-23 06:47:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 09:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表