找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic: Innovative Approach; Aboul Ella Hassanien,Ashraf Darwish

[复制链接]
楼主: 退缩
发表于 2025-3-28 16:07:09 | 显示全部楼层
Deep Learning Technology for Tackling COVID-19 Pandemicchnology have led to the rise of new distributed and learning studies. Throughout this chapter, we discuss how deep learning can contribute to these goals by stepping up ongoing research activities, improving the efficiency and speed of existing methods, and proposing original lines of research.
发表于 2025-3-28 19:18:26 | 显示全部楼层
发表于 2025-3-28 23:54:51 | 显示全部楼层
Lecture Notes in Computer Scienceed to support the solution proposed to ensure the integration of these technologies to fight the pandemic. Also, numerous emerging technologies used for the COVID-19 fight have been highlighted. Finally, the impact of COVID-19 is discussed, and applications showing how to mitigate this impact using the emerging technologies are outlined.
发表于 2025-3-29 06:39:33 | 显示全部楼层
Erklärungsfähigkeit semantischer Systemehe examination investigates the method of reasoning of human-robot groups to increase creation utilizing preferences of both the simplicity of coordination and keeping up social removing. This chapter highlights the role of social robotic in fighting COVID-19. Also, it presents the requirements of social robotics.
发表于 2025-3-29 10:05:29 | 显示全部楼层
发表于 2025-3-29 12:59:49 | 显示全部楼层
https://doi.org/10.1007/978-0-387-72926-8sector worker and reduce the spread of COVID-19 pandemic. The chapter also presents the problems and challenges and present to the researchers and academics some future research points from the AI point of view that can help healthcare sectors and curbing the COVID-19 spread.
发表于 2025-3-29 16:26:24 | 显示全部楼层
Semantik der Adjektive des Deutschen using the transfer learning method and InceptionV3 algorithm has been presented to classify the X-ray images into COVID-19, Normal, and Pneumonia classes. The experimental results show that the proposed model achieved 98% Accuracy on the test set for classifying the images from the 3 different classes.
发表于 2025-3-29 20:48:18 | 显示全部楼层
发表于 2025-3-30 00:11:33 | 显示全部楼层
发表于 2025-3-30 04:41:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 00:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表