找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Digital Forensics and Watermarking; 17th International W Chang D. Yoo,Yun-Qing Shi,Gwangsu Kim Conference proceedings 2019 Springer Nature

[复制链接]
楼主: 力学
发表于 2025-3-26 21:49:18 | 显示全部楼层
Nandita Chaudhary,Shashi Shuklaiction algorithm is essential and crucial. In this paper, a high-performance error-prediction method based on Multiple Linear Regression (MLR) algorithm is proposed to improve the performance of Reversible Data Hiding (RDH). The MLR matrix function that indicates the inner correlations between the p
发表于 2025-3-27 01:16:54 | 显示全部楼层
https://doi.org/10.1007/978-3-030-11389-6cryptography; digital forensics; watermarking; steganalysis; steganography; security service; data hiding;
发表于 2025-3-27 05:57:03 | 显示全部楼层
978-3-030-11388-9Springer Nature Switzerland AG 2019
发表于 2025-3-27 12:36:53 | 显示全部楼层
发表于 2025-3-27 13:36:45 | 显示全部楼层
发表于 2025-3-27 20:36:03 | 显示全部楼层
发表于 2025-3-28 00:29:45 | 显示全部楼层
发表于 2025-3-28 05:04:07 | 显示全部楼层
Rethinking Resistance and Colonialism,ly PEE and MHM to embed the LSB of . to reserve space for secret data. Next, we encrypt the image and change the LSB of . to realize the embedding of secret data. In the process of extraction, the reversibility of image and secret data can be guaranteed. The utilization of correlation between neighb
发表于 2025-3-28 10:15:08 | 显示全部楼层
Nandita Chaudhary,Shashi Shuklarovide a sparser prediction-error image for data embedding, and thus improves the performance of RDH. Experimental results have shown that the proposed method outperform the state-of-the-art error prediction algorithms.
发表于 2025-3-28 14:18:10 | 显示全部楼层
Convolutional Neural Network for Larger JPEG Images Steganalysis. 512, 1024 . 1024 and 2048 . 2048. For different application scenes, we take two methods to generate large samples. The result demonstrates that the proposed scheme can make directly training the steganalysis detectors on large images feasible.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 02:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表