找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Differential and Riemannian Manifolds; Serge Lang Textbook 1995Latest edition Springer-Verlag New York, Inc. 1995 De Rham cohomology.Hodge

[复制链接]
楼主: Scuttle
发表于 2025-3-28 15:19:40 | 显示全部楼层
发表于 2025-3-28 22:38:43 | 显示全部楼层
,Stokes’ Theorem,If . is a manifold and . a submanifold, then any differential form on . induces a form on .. We can view this as a very special case of the inverse image of a form, under the embedding (injection) map.
发表于 2025-3-29 01:56:05 | 显示全部楼层
Differential Calculus,my book on real analysis [La 93] give a self-contained and complete treatment for Banach spaces. We summarize certain facts concerning their properties as topological vector spaces, and then we summarize differential calculus. . and start immediately with Chapter II if the reader is accustomed to th
发表于 2025-3-29 05:10:16 | 显示全部楼层
发表于 2025-3-29 07:29:28 | 显示全部楼层
Vector Bundles,al glueing procedure can be used to construct more general objects known as vector bundles, which give powerful invariants of a given manifold. (For an interesting theorem see Mazur [Maz 61].) In this chapter, we develop purely formally certain functorial constructions having to do with vector bundl
发表于 2025-3-29 13:03:22 | 显示全部楼层
Operations on Vector Fields and Differential Forms,g forms.” Applying it to the tangent bundle, we call the sections of our new bundle differential forms. One can define formally certain relations between functions, vector fields, and differential forms which lie at the foundations of differential and Riemannian geometry. We shall give the basic sys
发表于 2025-3-29 19:13:09 | 显示全部楼层
发表于 2025-3-29 21:25:04 | 显示全部楼层
Covariant Derivatives and Geodesics,ssumed to be C. unless otherwise specified. We let X be a manifold. We denote the .-vector space of vector fields by ΓT(X). Observe that ΓT(X) is also a module over the ring of functions.We let π:TX →Xbe the natural map of the tangent bundle onto X.
发表于 2025-3-30 00:02:18 | 显示全部楼层
Volume Forms,ose extension to the infinite dimensional case is not evident. So this chapter is devoted to these forms of maximal degree. In the next chapter, we shall study how to integrate them, so the present chapter also provides a transition from the differential theory to the integration theory.
发表于 2025-3-30 04:13:17 | 显示全部楼层
,Applications of Stokes’ Theorem,the computation of the maximal de Rham cohomology (the space of all forms of maximal degree modulo the subspace of exact forms); some come from Riemannian geometry; and some come from complex manifolds, as in Cauchy’s theorem and the Poincaré residue theorem. I hope that the selection of topics will
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-29 17:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表