找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Differential and Difference Equations with Applications; ICDDEA, Amadora, Por Sandra Pinelas,Tomás Caraballo,John R. Graef Conference proce

[复制链接]
楼主: Aggrief
发表于 2025-3-26 22:40:26 | 显示全部楼层
发表于 2025-3-27 01:48:55 | 显示全部楼层
发表于 2025-3-27 09:15:36 | 显示全部楼层
Real Optimization with SAP® APOn terms of Chebyshev polynomials. The origin of both, a uniform descriptor and the origin of orthogonal polynomials, can be traced back to a letter of Guido Grandi to Leibniz in 1713 on the mathematical description of the shape of flowers. In this way geometrical description and analytical tools are seamlessly combined.
发表于 2025-3-27 12:24:16 | 显示全部楼层
发表于 2025-3-27 17:13:59 | 显示全部楼层
发表于 2025-3-27 18:31:39 | 显示全部楼层
发表于 2025-3-27 22:31:48 | 显示全部楼层
发表于 2025-3-28 03:55:01 | 显示全部楼层
Inflation and the Business Cycleporous media, from Darcy’s law to Darcy–Brinkman–Forchheimer’s more general model. Using the double averaging concept (in time and in space) we explain how to obtain the more general system of equations that governs turbulent flows through porous media. For the one-equation turbulent problem in the
发表于 2025-3-28 08:29:23 | 显示全部楼层
A Constructive Look at the Real Number Lineoblem that we consider has been developed by Kozak and, afterwards, improved by Henriquez. Our aim is to show the existence of mild solutions continuously depending on a parameter for the problem studied in the case when the set-valued map is Lipschitz in state variables. Moreover, as a consequence,
发表于 2025-3-28 11:25:29 | 显示全部楼层
A Constructive Look at the Real Number Lineence operators, acting in Hilbert spaces, can be factorized using a pair of mutually adjoint first order difference operators. These classes encompass equations of hypergeometric type describing classical orthogonal polynomials of a discrete variable.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-29 14:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表