找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deterministic Global Optimization; Theory, Methods and Christodoulos A. Floudas Book 2000 Springer Science+Business Media Dordrecht 2000 A

[复制链接]
楼主: 精明
发表于 2025-3-30 08:14:48 | 显示全部楼层
发表于 2025-3-30 14:13:59 | 显示全部楼层
发表于 2025-3-30 19:19:50 | 显示全部楼层
https://doi.org/10.1007/978-3-319-23204-1 of the convex envelopes. Section 2.5 presents the definitions of the local, global optima and E-global optima. Finally, section 2.6 introduces the reader to the basics of difference of convex functions denoted as D.C. functions.
发表于 2025-3-30 21:01:49 | 显示全部楼层
https://doi.org/10.1007/978-3-642-61322-7modified-GOP approach along with computational studies for bilevel linear programming problems. Finally, section 5.4 presents the theoretical and computational studies for bilevel quadratic programming models based on the GOP principles.
发表于 2025-3-31 01:53:48 | 显示全部楼层
发表于 2025-3-31 06:46:39 | 显示全部楼层
Recent Developments in Alcoholismretical properties that . satisfies. Section 11.3 introduces the .BB global optimization approach for box constrained twice-differentiable NLPs and presents its convergence proof. Section 11.4 presents the complexity analysis of the .BB approach. The material presented in this chapter is based on the work of Maranas and Floudas (1994a), (1994b).
发表于 2025-3-31 11:44:08 | 显示全部楼层
发表于 2025-3-31 13:52:05 | 显示全部楼层
Basic Concepts of Global Optimization of the convex envelopes. Section 2.5 presents the definitions of the local, global optima and E-global optima. Finally, section 2.6 introduces the reader to the basics of difference of convex functions denoted as D.C. functions.
发表于 2025-3-31 18:06:10 | 显示全部楼层
The GOP Approach in Bilevel Linear and Quadratic Problemsmodified-GOP approach along with computational studies for bilevel linear programming problems. Finally, section 5.4 presents the theoretical and computational studies for bilevel quadratic programming models based on the GOP principles.
发表于 2025-4-1 00:57:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 13:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表