找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Detection of Intrusions and Malware, and Vulnerability Assessment; 12th International C Magnus Almgren,Vincenzo Gulisano,Federico Maggi Con

[复制链接]
楼主: 小费
发表于 2025-3-25 06:50:52 | 显示全部楼层
发表于 2025-3-25 09:24:42 | 显示全部楼层
发表于 2025-3-25 14:13:26 | 显示全部楼层
发表于 2025-3-25 19:26:39 | 显示全部楼层
Robust and Effective Malware Detection Through Quantitative Data Flow Graph Metricsverage detection rate of 98.01 % and a false positive rate of 0.48 %. Moreover, we show that our approach is able to detect new malware (i.e. samples from malware families not included in the training set) and that the consideration of quantities in itself significantly improves detection precision.
发表于 2025-3-25 23:50:03 | 显示全部楼层
Fine-Grained Control-Flow Integrity Through Binary Hardening-grained CFI checks using information from a trusted dynamic loader. A shadow stack enforces precise integrity for function returns. Our prototype implementation shows that Lockdown results in low performance overhead and a security analysis discusses any remaining gadgets.
发表于 2025-3-26 02:25:55 | 显示全部楼层
发表于 2025-3-26 06:33:56 | 显示全部楼层
发表于 2025-3-26 11:06:21 | 显示全部楼层
发表于 2025-3-26 14:25:09 | 显示全部楼层
发表于 2025-3-26 20:37:00 | 显示全部楼层
Capturing DDoS Attack Dynamics Behind the Scenesattack strategies, if any. Our study is based on 50,704 different Internet DDoS attacks. Our results indicate that attackers deliberately schedule their controlled bots in a dynamic fashion, and such dynamics can be well captured by statistical distributions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 07:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表