找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Desingularization: Invariants and Strategy; Application to Dimen Vincent Cossart,Uwe Jannsen,Shuji Saito Book 2020 The Editor(s) (if applic

[复制链接]
楼主: Bunion
发表于 2025-3-25 04:24:03 | 显示全部楼层
发表于 2025-3-25 09:29:26 | 显示全部楼层
发表于 2025-3-25 14:11:35 | 显示全部楼层
发表于 2025-3-25 16:39:51 | 显示全部楼层
,Characteristic Polyhedra of , ⊂ ,,In this chapter we are always in Setup A (beginning of Chap. .). We introduce a polyhedron Δ(., .) which plays a crucial role in this monograph. It will provide us with useful invariants of singularities of Spec(.∕.) (see Chap. .). It also give us a natural way to transform a (.)-standard base of . into a standard base of . (see Corollary 8.26).
发表于 2025-3-25 22:40:22 | 显示全部楼层
发表于 2025-3-26 03:53:55 | 显示全部楼层
,Termination of the Fundamental Sequences of ,-Permissible Blow-Ups, and the Case ,,(,) = 1,In this chapter we prove the Key Theorem . in Chap. ., by deducing it from a stronger result, Theorem 10.2 below. Moreover we will give an explicit bound on the length of the fundamental sequence, by the .-invariant of the polyhedron at the beginning. First we introduce a basic setup.
发表于 2025-3-26 07:13:21 | 显示全部楼层
,Additional Invariants in the Case ,,(,) = 2,In order to show key Theorem . in Chap. ., we recall further invariants for singularities, which were defined by Hironaka. The definition works for any dimension, as long as the directrix is 2-dimensional.
发表于 2025-3-26 11:54:36 | 显示全部楼层
发表于 2025-3-26 16:36:48 | 显示全部楼层
发表于 2025-3-26 19:17:26 | 显示全部楼层
,Proof in the Case ,,(,) = ,,(,) = 2 , III: Inseparable Residue Extensions,In this chapter we complete the proof of key Theorem . (see Theorem 14.4 below).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 19:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表