书目名称 | Design of Flexible Production Systems | 副标题 | Methodologies and To | 编辑 | Tullio Tolio | 视频video | | 概述 | New approach to design flexible manufacturing system architectures (Focused Flexibility Manufacturing Systems-FFMSs) endowed with the right level of flexibility required by the specific production pro | 图书封面 |  | 描述 | .In the last decade, the production of mechanical components to be assembled in final products produced in high volumes (e.g. cars, mopeds, industrial vehicles, etc.) has undergone deep changes due to the overall modifications in the way companies compete. Companies must consider competitive factors such as short lead times, tight product tolerances, frequent market changes and cost reduction. Anyway, companies often have to define production objectives as trade-offs among these critical factors since it can be difficult to improve all of them...Even if system flexibility is often considered a fundamental requirement for firms, it is not always a desirable characteristic of a system because it requires relevant investment cost which can jeopardize the profitability of the firm. Dedicated systems are not able to adapt to changes of the product characteristics while flexible systems offer more flexibility than what is needed, thus increasing investment and operative costs. Production contexts characterized by mid to high demand volume of well identified families of products in continuous evolution do not require the highest level of flexibility; therefore, manufacturing system flexib | 出版日期 | Book 2009 | 关键词 | Focused Flexibilty; Manufacturing Strategy; Manufacturing System; Manufacturing System Design; Manufactu | 版次 | 1 | doi | https://doi.org/10.1007/978-3-540-85414-2 | isbn_softcover | 978-3-642-09908-3 | isbn_ebook | 978-3-540-85414-2 | copyright | Springer-Verlag Berlin Heidelberg 2009 |
1 |
Front Matter |
|
|
Abstract
|
2 |
,Designing Manufacturing Flexibility in Dynamic Production Contexts, |
Walter Terkaj,Tullio Tolio,Anna Valente |
|
Abstract
Manufacturing Flexibility is seen as the main answer for surviving in markets characterized by frequent volume changes and evolutions of the technological requirements of products. However, the competitiveness of a firm can be strongly affected by capital intensive investments in system flexibility. This chapter presents an approach to design new manufacturing system architectures endowed with the right level of flexibility required by the specific production problem. These systems are named Focused Flexibility Manufacturing Systems (FFMSs). The key idea consists in tuning system flexibility on the production problem to cope with uncertainty related to the evolution of product demand. The significance of this topic and its potential impact on the industrial sector in the medium-long run is testified by the interest shown by companies making initial efforts in this field.
|
3 |
,Flexibility in Manufacturing – An Empirical Case-Study Research, |
Marco Cantamessa,Carlo Capello |
|
Abstract
Since the last two decades, manufacturing firms are facing an increasingly risky environment because of product differentiation, high demand variability and shortening of product life-cycles. Because of these trends, firms need to innovate their manufacturing resources in order to promptly respond to new requests coming from markets. Traditionally, this meant moving from rigid production lines to Flexible Manufacturing Systems (FMS). However, literature and empirical evidence prove that firms have not really located themselves on one of these two opposing manufacturing plant strategies. Rather, they have filled up the vast “gray area” in the middle. Their attempts have been aimed at developing manufacturing system solutions allowing them to precisely supply their markets’ needs, and consequently paying for the system flexibility they really need. Because of this, the concept of manufacturing flexibility has to be revised and extended in order to include these solutions involving a “customized” or “focused” architectural flexibility. The current chapter shows the results from the case study research that empirically supports and casts insights in this trend. Based on these findings,
|
4 |
,A Review on Manufacturing Flexibility, |
Walter Terkaj,Tullio Tolio,Anna Valente |
|
Abstract
The topic of manufacturing flexibility has been addressed by many scientific contributions in the past years, thus highlighting the relevance of the problem both at industrial and academic level. Internal and external issues need to be faced at the same time when designing a manufacturing system and its flexibility; indeed, products and processes are easily and frequently changed by market and manufacturing strategies, while production systems must cope with relevant inertia which slow down their changes. Therefore, a fundamental issue consists of filling the modeling gap between a production problem and the manufacturing system best suited to face it. Current literature provides a huge research on the analysis of flexibility, as a solution to cope with uncertainty in the market and to support the manufacturing strategy. However, the link between the need of flexibility and the design of manufacturing systems is still weak. This need includes a deeper understanding of the nature of flexibility and, in turn, a clear definition of the dimensions of flexibility. This chapter reviews the state of the art of the literature on manufacturing flexibility by proposing also a conceptual fram
|
5 |
,Product-Process-System Information Formalization, |
Marcello Colledani,Walter Terkaj,Tullio Tolio |
|
Abstract
This chapter introduces a conceptual framework for the integrated modeling of product, process and production system data. The work focuses on the Manufacturing System Design problem and aims at providing a common data structure as a reference for different methodologies and tools in this domain. The framework is flexible, extendible, scalable and has been developed as an object-oriented model by means of UML (Unified Modeling Language). Moreover, the proposed data model can have a wider applicability since it is based on shared standards and previous general frameworks. The concept of evolution has been introduced into the model, since it is essential to include market uncertainty in the design of competitive production systems. Finally, the developed framework has been translated into a relational database which can be interfaced with all the main phases of the system design approach presented in this book.
|
6 |
,Manufacturing Strategy: Production Problem Analysis for Assessing Focused Flexibility, |
Manfredi Bruccoleri,Diego Lanza,Giovanni Perrone |
|
Abstract
The objective of this chapter is to define an operationalization pattern which supports decision makers and managers in determining the level of manufacturing flexibility competences, given the business strategy and the manufacturing structure of the firm. This should drive the production system design and configuration activity. Specifically, this chapter presents an innovative approach to develop a manufacturing strategy, which is based on the idea that information on potential production problems that the manufacturing system could face throughout a given long-term planning horizon should be used as a starting point to determine the level of flexibility that the system should possess.
|
7 |
,Pallet Configuration for Approaching Mapping Requirements on Devices, |
Giovanni Celano,Antonio Costa,Sergio Fichera,Barbaro Santangelo |
|
Abstract
The correct configuration of a system is a strategic problem whenever a tool manufacturer should select the optimal solution to tackle a specific production problem. Once information concerning the production problem has been provided to the machine tool builder, it is possible to start the technological analysis of the part family which represents a very critical phase of the system design process. In particular, process plans to produce the workpieces need to be defined. To reach this goal it is necessary to elaborate a mapping between the part types to be produced and the available manufacturing resources. To this purpose, each machining feature of the various part types is matched with an operation or a sequence of operations, taking into consideration the feasible setups. This chapter provides a procedure named Mapping Requirement on Devices generating different process plans. It is based on three main modules. The first module performs a setup planning procedure; the second module deals with the problem of pallet configuration, whereas the last module performs the sequencing of the part setups and generates a set of alternative process plans. These process plans will then be
|
8 |
,Design of Focused Flexibility Manufacturing Systems (FFMSs), |
Walter Terkaj,Tullio Tolio,Anna Valente |
|
Abstract
Manufacturing systems design must provide effective solutions to cope with the demand during the whole system life-cycle. The problem consists of selecting the appropriate set of resources which best fits the requirements of the addressed production problem. When the demand is characterized by a family of products undergoing technological and volume modifications, the system design process becomes quite complicated. Starting from present and forecasted information, machine tool builders have to design systems endowed with the flexibility and reconfigurability levels that enable the system to face the production problem variability during its life. In spite of the relevance of this topic, there is a lack of tools to explicitly design system flexibility and reconfigurability considering the uncertainty affecting the problem. By addressing two main types of uncertainty, i.e. demand variability and resource availability, this chapter presents a solution method based on multi-stage stochastic programming, to support the design of new manufacturing system architectures whose level of flexibility is focused on the specific production requirements. The problem variability is modeled throug
|
9 |
,System Life-Cycle Planning, |
Marco Cantamessa,Carlo Capello,Giuseppe Cordella |
|
Abstract
This chapter introduces a computational model to support the system user along the decision making process regarding the type and timing of system configurations to be acquired and the appropriate flexibility degree. Based on the empirical evidence described in Chap. 2, Focused Flexibility Manufacturing Systems (FFMS) seem to be a viable alternative to solve the classical dichotomy between rigid and fully flexible systems. This focused flexibility concept, as introduced in Chap. 3, can be a valuable solution for manufacturing firms to satisfy the market needs. Previous chapters tackled the system flexibility design process from the machine tool builder standpoint. Once the potential system configurations have been defined and the capital outlays required for acquiring and/or transitioning among them have been quantified, the machine tool builder makes an offer to the system user. The latter needs to select the most profitable solution by evaluating the performance generated by each configuration under different demand profiles from a financial point of view. This decision is supported by two optimization models, one static – i.e. not affected by the time dimension – and one dynamic
|
10 |
,System Performance Simulation and Analysis, |
Antonio Grieco,Francesco Nucci |
|
Abstract
The performance evaluation of different system architectures and the development of tailored methods to manage FFMSs at operational level are the final decision activities of the design approach presented in this book. In this chapter a simulation theory-based tool is presented. The proposed tool is able to automatically simulate a set of different scenarios and to provide the necessary capability to compare the performance of FFMSs versus FMSs. Moreover, tailored methods to optimize the performance at operational level are introduced in the simulated supervisor of the FFMSs architecture. The methods allow to split the execution of the part program among different machining centers and to manage the opportunity to share more than one pallet transport system on the same route. The methods are validated through simulation experiments.
|
11 |
,Testing, |
Manfredi Bruccoleri,Carlo Capello,Antonio Costa,Francesco Nucci,Walter Terkaj,Anna Valente |
|
Abstract
This chapter aims at presenting the experimental analyses carried out to evaluate the benefits coming from applying the manufacturing system design framework presented in the previous chapters. To this purpose three families of products belonging to different production contexts have been studied. These products have been used as input data of the testing experiments which were aimed at studying the performance of an FFMS when facing production problems characterized by technological and demand evolution. The testing experiments have been carried out by exploiting the software tools that have been developed by implementing the methodologies presented in the previous chapters.
|
12 |
Back Matter |
|
|
Abstract
|
|
|