找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Derivative Security Pricing; Techniques, Methods Carl Chiarella,Xue-Zhong He,Christina Sklibosios N Book 2015 Springer-Verlag Berlin Heide

[复制链接]
查看: 16151|回复: 60
发表于 2025-3-21 16:19:21 | 显示全部楼层 |阅读模式
书目名称Derivative Security Pricing
副标题Techniques, Methods
编辑Carl Chiarella,Xue-Zhong He,Christina Sklibosios N
视频video
概述Focuses on the financial intuition of key results of derivative security pricing.Helps readers from both academia and industry without formal mathematical training to understand the fundamentals of ma
丛书名称Dynamic Modeling and Econometrics in Economics and Finance
图书封面Titlebook: Derivative Security Pricing; Techniques, Methods  Carl Chiarella,Xue-Zhong He,Christina Sklibosios N Book 2015 Springer-Verlag Berlin Heide
描述The book presents applications of stochastic calculus to derivative security pricing and interest rate modelling. By focusing more on the financial intuition of the applications rather than the mathematical formalities, the book provides the essential knowledge and understanding of fundamental concepts of stochastic finance, and how to implement them to develop pricing models for derivatives as well as to model spot and forward interest rates. Furthermore an extensive overview of the associated literature is presented and its relevance and applicability are discussed. Most of the key concepts are covered including Ito’s Lemma, martingales, Girsanov’s theorem, Brownian motion, jump processes, stochastic volatility, American feature and binomial trees. The book is beneficial to higher-degree research students, academics and practitioners as it provides the elementary theoretical tools to apply the techniques of stochastic finance in research or industrial problems in the field.
出版日期Book 2015
关键词Derivative security pricing; Forward rate models; Interest rate modelling; Mathematical finance; Spot in
版次1
doihttps://doi.org/10.1007/978-3-662-45906-5
isbn_softcover978-3-662-51631-7
isbn_ebook978-3-662-45906-5Series ISSN 1566-0419 Series E-ISSN 2363-8370
issn_series 1566-0419
copyrightSpringer-Verlag Berlin Heidelberg 2015
The information of publication is updating

书目名称Derivative Security Pricing影响因子(影响力)




书目名称Derivative Security Pricing影响因子(影响力)学科排名




书目名称Derivative Security Pricing网络公开度




书目名称Derivative Security Pricing网络公开度学科排名




书目名称Derivative Security Pricing被引频次




书目名称Derivative Security Pricing被引频次学科排名




书目名称Derivative Security Pricing年度引用




书目名称Derivative Security Pricing年度引用学科排名




书目名称Derivative Security Pricing读者反馈




书目名称Derivative Security Pricing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:40:02 | 显示全部楼层
发表于 2025-3-22 02:04:33 | 显示全部楼层
Book 2015tuition of the applications rather than the mathematical formalities, the book provides the essential knowledge and understanding of fundamental concepts of stochastic finance, and how to implement them to develop pricing models for derivatives as well as to model spot and forward interest rates. Fu
发表于 2025-3-22 06:08:01 | 显示全部楼层
发表于 2025-3-22 10:32:26 | 显示全部楼层
发表于 2025-3-22 15:27:45 | 显示全部楼层
发表于 2025-3-22 18:28:21 | 显示全部楼层
Andrés Rodríguez-Lorenzo,Chieh-Han John TzouIn this chapter, we introduce some stochastic volatility models and consider option prices under stochastic volatility. In particular, we consider the solutions of the option pricing when volatility follows a mean-reverting diffusion process. We also introduce the Heston model, one of the most popular stochastic volatility models.
发表于 2025-3-22 23:18:02 | 显示全部楼层
https://doi.org/10.1007/978-3-030-45920-8e binomial expression for the option price converges to the Black–Scholes option price and pricing equation. Alternatively, the continuous time model can be discretised in a way that yields the same expressions as obtained by the binomial tree approach.
发表于 2025-3-23 03:39:24 | 显示全部楼层
Facial Paralysis and Facial Reanimations which may underestimate the size of the smile. We then develop an approach to calibrate the smile by choosing the volatility function as a deterministic function of the underlying asset price and time so as to fit the model option price to the observed volatility smile.
发表于 2025-3-23 07:10:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表