找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Dense Image Correspondences for Computer Vision; Tal Hassner,Ce Liu Book 2016 Springer International Publishing Switzerland 2016 Annotatio

[复制链接]
楼主: hydroxyapatite
发表于 2025-3-28 18:01:46 | 显示全部楼层
发表于 2025-3-28 20:46:01 | 显示全部楼层
Dense, Scale-Less Descriptorsnd so single scale selection often results in poor matches when images show content at different scales. (2) We propose representing pixel appearances with sets of SIFTs extracted at multiple scales. Finally, (3) low-dimensional, linear subspaces are shown to accurately represent such SIFT sets. By
发表于 2025-3-28 23:52:07 | 显示全部楼层
发表于 2025-3-29 05:47:24 | 显示全部楼层
发表于 2025-3-29 08:13:07 | 显示全部楼层
发表于 2025-3-29 13:48:29 | 显示全部楼层
Joint Inference in Weakly-Annotated Image Datasets via Dense Correspondencesegmenting multiple images containing a common object). Extensive numerical evaluations and comparisons show that our method consistently outperforms the state of the art in automatic annotation and semantic labeling, while requiring significantly less labeled data. In contrast to previous co-segmen
发表于 2025-3-29 18:43:37 | 显示全部楼层
发表于 2025-3-29 21:34:13 | 显示全部楼层
o solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code and data, necessary for expediting the development of effective correspondence-based computer vision systems.978-3-319-35914-4978-3-319-23048-1
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 08:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表