找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Delay Equations; Functional-, Complex Odo Diekmann,Sjoerd M. Verduyn Lunel,Hanns-Otto Wa Book 1995 Springer Science+Business Media New York

[复制链接]
楼主: 战神
发表于 2025-3-28 16:05:11 | 显示全部楼层
发表于 2025-3-28 22:50:03 | 显示全部楼层
https://doi.org/10.1007/978-3-658-23727-1Floquet theory deals with periodic linear systems. Let a strongly continuous semigroup {.(.)}. on a complex Banach space . be given.
发表于 2025-3-29 02:29:32 | 显示全部楼层
Die Geschichte hinter diesem BuchLet a strongly continuous semigroup of operators {.(.)}. on a real Banach space . be given. Assume that . is ⊙-reflexive with respect to the semigroup. Consider a .-map G: .→.* on some open set . ⊂ ..
发表于 2025-3-29 03:21:31 | 显示全部楼层
Unsere Hoffnungen haben sich nicht erfülltIn this section we use the prototype equation . with a smooth function .: ℝ→ℝ, in order to illustrate basic results on the long-term behaviour of solutions and on the organization of the phase space. We assume that . satisfies the condition . for negative feedback and that/is bounded from above or from below.
发表于 2025-3-29 11:13:36 | 显示全部楼层
发表于 2025-3-29 15:20:31 | 显示全部楼层
Linear RFDE as bounded perturbations,Consider the linear autonomous RFDE. where ζ denotes a . × . matrix-valued function whose entries belong to NBV. Alternatively we can write (see I.1.5)
发表于 2025-3-29 17:12:26 | 显示全部楼层
Spectral theory,In Chapter I we studied the large time behaviour of solutions of linear retarded functional differential equations. This study was based on the observation that for positive time, the solution .(·;.) of the RFDE . satisfies a renewal equation (I.2.10)
发表于 2025-3-29 20:13:39 | 显示全部楼层
Completeness or small solutions?,In Section 1.5 the large time behaviour of solutions of a linear retarded functional differential equation. was studied. Using the renewal equation and the inverse Laplace transform, we found the following representation [see (I.5.3)] for the solution of (1.1): . where
发表于 2025-3-30 01:00:18 | 显示全部楼层
发表于 2025-3-30 06:39:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-27 03:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表