找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Delay Differential Equations and Applications; Proceedings of the N O. Arino,M.L. Hbid,E. Ait Dads Conference proceedings 20061st edition S

[复制链接]
楼主: Considerate
发表于 2025-3-23 13:19:56 | 显示全部楼层
https://doi.org/10.1007/978-3-642-80490-8unctional differential equations from finite to infinite dimensions, one of the first and main examples which comes to mind is the case of evolution equations combining diffusion and delayed reaction. This is the situation in the first example that we are going to present, which is a model proposed
发表于 2025-3-23 16:28:35 | 显示全部楼层
,Alphabetisches Fachwörterverzeichnis,al number. . ([–., 0],.) denotes the space of continuous functions from [–., 0] to . with the uniform convergence topology and we will use simply .. for . ([–., 0],.). For . ∈ .([–., .],.), . > 0 and . ∈ [0, .], let .. denote the element of .. defined by ..(θ) = .(. + θ), –. ≤ θ ≤ 0.
发表于 2025-3-23 18:41:07 | 显示全部楼层
发表于 2025-3-24 01:56:49 | 显示全部楼层
https://doi.org/10.1007/978-3-322-92326-4s in various disease states, with the sojourn time in a state being exponentially distributed. Time delays are introduced to model constant sojourn times in a state, for example, the infective or immune state. Models then become delay-differential and/or integral equations. For a review of some epid
发表于 2025-3-24 02:40:47 | 显示全部楼层
发表于 2025-3-24 08:52:46 | 显示全部楼层
,Alphabetisches Fachwörterverzeichnis,Delay differential equations, differential integral equations and functional differential equations have been studied for at least 200 years (see E. Schmitt (1911) for references and some properties of linear equations). Some of the early work originated from problems in geometry and number theory.
发表于 2025-3-24 12:27:02 | 显示全部楼层
发表于 2025-3-24 16:35:33 | 显示全部楼层
发表于 2025-3-24 22:40:11 | 显示全部楼层
发表于 2025-3-25 00:49:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 11:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表