找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Reinforcement Learning-based Energy Management for Hybrid Electric Vehicles; Yuecheng Li,Hongwen He Book 2022 Springer Nature Switzer

[复制链接]
楼主: obesity
发表于 2025-3-23 12:57:24 | 显示全部楼层
发表于 2025-3-23 17:45:47 | 显示全部楼层
https://doi.org/10.1007/978-3-030-79241-1 the continuous energy management method, this chapter also introduces a PHEV energy management solution integrating history cumulative trip information (HCTI) to improve the EMS learning effect across a wider feasible domain of SoC.
发表于 2025-3-23 19:18:41 | 显示全部楼层
发表于 2025-3-24 02:04:59 | 显示全部楼层
Role of Government in Adjusting Economieswork could provide some useful clues and basic algorithmic frameworks for future study on more complex and intelligent vehicle control methods with the incorporation of multi-source sensory information.
发表于 2025-3-24 06:01:11 | 显示全部楼层
发表于 2025-3-24 10:24:21 | 显示全部楼层
Learning of EMSs in Discrete-Continuous Hybrid Action Space,rain information is described, and accordingly, the influence of the multi-source information on learning-based EMSs is discussed in terms of fuel economy, strategy performance under specific driving scenarios, and the strategy decisions.
发表于 2025-3-24 14:23:45 | 显示全部楼层
发表于 2025-3-24 18:27:12 | 显示全部楼层
The Value of the Developer Economytate. Meanwhile, energy consumption of the powertrain occurs simultaneously with the transition of vehicle states. This instantaneous energy (or fuel) consumption and the sum of energy (fuel) it consumes over the future will provide a criterion for judging the strategy performance. Then, a new energ
发表于 2025-3-24 21:43:51 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-5308-3riven, end-to-end learning-based EMSs, we desire not only to reduce their reliance on empirical parameter tuning, but also a higher requirement for its data mining capability, i.e., the energy-saving control schemes should be learned quickly from multidimensional environmental information. The DQN m
发表于 2025-3-24 23:57:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 21:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表