找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Reinforcement Learning for Wireless Networks; F. Richard Yu,Ying He Book 2019 The Author(s), under exclusive license to Springer Natu

[复制链接]
楼主: 热爱
发表于 2025-3-23 11:20:18 | 显示全部楼层
发表于 2025-3-23 15:22:23 | 显示全部楼层
发表于 2025-3-23 18:50:23 | 显示全部楼层
Book 2019t learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme... There is a phenomenal burst of research activities in
发表于 2025-3-24 01:11:19 | 显示全部楼层
发表于 2025-3-24 05:09:28 | 显示全部楼层
Deep Reinforcement Learning for Interference Alignment Wireless Networks,e-enabled IA wireless networks assume that the channel is invariant, which is unrealistic considering the time-varying nature of practical wireless environments. In this chapter, we consider realistic time-varying channels. Specifically, the channel is formulated as a finite-state Markov channel (FS
发表于 2025-3-24 08:46:55 | 显示全部楼层
发表于 2025-3-24 10:47:13 | 显示全部楼层
发表于 2025-3-24 17:00:13 | 显示全部楼层
发表于 2025-3-24 22:04:14 | 显示全部楼层
发表于 2025-3-25 01:00:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-21 19:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表