找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Reinforcement Learning; Frontiers of Artific Mohit Sewak Book 2019 Springer Nature Singapore Pte Ltd. 2019 Reinforcement Learning.Deep

[复制链接]
查看: 12741|回复: 49
发表于 2025-3-21 20:06:57 | 显示全部楼层 |阅读模式
书目名称Deep Reinforcement Learning
副标题Frontiers of Artific
编辑Mohit Sewak
视频video
概述Presents comprehensive insights into advanced deep learning concepts like the ‘hard attention mechanism’.Introduces algorithms that are slated to become the future of artificial intelligence.Allows re
图书封面Titlebook: Deep Reinforcement Learning; Frontiers of Artific Mohit Sewak Book 2019 Springer Nature Singapore Pte Ltd. 2019 Reinforcement Learning.Deep
描述.This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code...This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms..
出版日期Book 2019
关键词Reinforcement Learning; Deep Learning; Artificial Intelligence; Deep Q Learning; A3C; Actor-Critic; Deep M
版次1
doihttps://doi.org/10.1007/978-981-13-8285-7
isbn_softcover978-981-13-8287-1
isbn_ebook978-981-13-8285-7
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

书目名称Deep Reinforcement Learning影响因子(影响力)




书目名称Deep Reinforcement Learning影响因子(影响力)学科排名




书目名称Deep Reinforcement Learning网络公开度




书目名称Deep Reinforcement Learning网络公开度学科排名




书目名称Deep Reinforcement Learning被引频次




书目名称Deep Reinforcement Learning被引频次学科排名




书目名称Deep Reinforcement Learning年度引用




书目名称Deep Reinforcement Learning年度引用学科排名




书目名称Deep Reinforcement Learning读者反馈




书目名称Deep Reinforcement Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:55:44 | 显示全部楼层
Mathematical and Algorithmic Understanding of Reinforcement Learning, is imperative to understand these concepts before going forward to discussing some advanced topics ahead. Finally, we will cover the algorithms like value iteration and policy iteration for solving the MDP.
发表于 2025-3-22 01:56:27 | 显示全部楼层
发表于 2025-3-22 07:12:40 | 显示全部楼层
发表于 2025-3-22 10:55:02 | 显示全部楼层
发表于 2025-3-22 16:45:33 | 显示全部楼层
发表于 2025-3-22 19:22:01 | 显示全部楼层
Deutschlands europäisierte Außenpolitik ahead into some advanced topics. We would also discuss how the agent learns to take the best action and the policy for learning the same. We will also learn the difference between the On-Policy and the Off-Policy methods.
发表于 2025-3-22 21:23:50 | 显示全部楼层
发表于 2025-3-23 02:42:27 | 显示全部楼层
发表于 2025-3-23 07:05:40 | 显示全部楼层
ed to become the future of artificial intelligence.Allows re.This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 05:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表