找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Neural Networks in a Mathematical Framework; Anthony L. Caterini,Dong Eui Chang Book 2018 The Author(s) 2018 deep learning.machine le

[复制链接]
查看: 54931|回复: 36
发表于 2025-3-21 20:09:38 | 显示全部楼层 |阅读模式
书目名称Deep Neural Networks in a Mathematical Framework
编辑Anthony L. Caterini,Dong Eui Chang
视频video
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Deep Neural Networks in a Mathematical Framework;  Anthony L. Caterini,Dong Eui Chang Book 2018 The Author(s) 2018 deep learning.machine le
描述.This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks..This SpringerBrief is one step towards unlocking the .black box .of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but alsoto those outside of the neutral network community..
出版日期Book 2018
关键词deep learning; machine learning; neural networks; multilayer perceptron; convolutional neural networks; r
版次1
doihttps://doi.org/10.1007/978-3-319-75304-1
isbn_softcover978-3-319-75303-4
isbn_ebook978-3-319-75304-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s) 2018
The information of publication is updating

书目名称Deep Neural Networks in a Mathematical Framework影响因子(影响力)




书目名称Deep Neural Networks in a Mathematical Framework影响因子(影响力)学科排名




书目名称Deep Neural Networks in a Mathematical Framework网络公开度




书目名称Deep Neural Networks in a Mathematical Framework网络公开度学科排名




书目名称Deep Neural Networks in a Mathematical Framework被引频次




书目名称Deep Neural Networks in a Mathematical Framework被引频次学科排名




书目名称Deep Neural Networks in a Mathematical Framework年度引用




书目名称Deep Neural Networks in a Mathematical Framework年度引用学科排名




书目名称Deep Neural Networks in a Mathematical Framework读者反馈




书目名称Deep Neural Networks in a Mathematical Framework读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:56:38 | 显示全部楼层
Deutschland 20 Jahre nach dem Mauerfall require when performing gradient descent steps to optimize the neural network. To represent the dependence of a neural network on its parameters, we then introduce the notion of parameter-dependent maps, including distinct notation for derivatives with respect to parameters as opposed to state vari
发表于 2025-3-22 00:45:29 | 显示全部楼层
Abschied vom Sozialstaat alter Prägungmeters, which allow us to perform gradient descent naturally over these vector spaces for each parameter. This approach contrasts with standard approaches to neural network modelling where the parameters are broken down into their components. We can avoid this unnecessary operation using the framewo
发表于 2025-3-22 05:55:48 | 显示全部楼层
发表于 2025-3-22 11:47:28 | 显示全部楼层
发表于 2025-3-22 16:09:19 | 显示全部楼层
发表于 2025-3-22 18:47:16 | 显示全部楼层
Generic Representation of Neural Networks,meters, which allow us to perform gradient descent naturally over these vector spaces for each parameter. This approach contrasts with standard approaches to neural network modelling where the parameters are broken down into their components. We can avoid this unnecessary operation using the framewo
发表于 2025-3-23 01:12:13 | 显示全部楼层
发表于 2025-3-23 02:48:32 | 显示全部楼层
发表于 2025-3-23 08:41:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 11:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表