找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning with R; Abhijit Ghatak Textbook 2019 Springer Nature Singapore Pte Ltd. 2019 Artificial Intelligence.Statistics.Deep neural

[复制链接]
查看: 33096|回复: 43
发表于 2025-3-21 18:28:35 | 显示全部楼层 |阅读模式
书目名称Deep Learning with R
编辑Abhijit Ghatak
视频video
概述Offers a hands on approach to deep learning while explaining the theory and mathematical concepts in an intuitive manner.Broadens the understanding of advanced neural networks including ConvNets and S
图书封面Titlebook: Deep Learning with R;  Abhijit Ghatak Textbook 2019 Springer Nature Singapore Pte Ltd. 2019 Artificial Intelligence.Statistics.Deep neural
描述. Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and mathematical constructs and enables the reader to create applications on computer vision, natural language processing and transfer learning.  .The book starts with an introduction to machine learning and moves on to describe the basic architecture, different activation functions, forward propagation, cross-entropy loss and backward propagation of a simple neural network. It goes on to create different code segments to construct deep neural networks. It discusses in detail the initialization of network parameters, optimization techniques, and some of the common issues surrounding neural networks such as dealing with NaNs and the vanishing/exploding gradient problem. Advanced variants of multilayered perceptrons namely, convolutional neural networks and sequence models are explained, followed by application to different use cases. The book makes extensive use of the Keras and TensorFlow frameworks. .
出版日期Textbook 2019
关键词Artificial Intelligence; Statistics; Deep neural networks; Regularization and hyper-parameter tuning; Co
版次1
doihttps://doi.org/10.1007/978-981-13-5850-0
isbn_ebook978-981-13-5850-0
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

书目名称Deep Learning with R影响因子(影响力)




书目名称Deep Learning with R影响因子(影响力)学科排名




书目名称Deep Learning with R网络公开度




书目名称Deep Learning with R网络公开度学科排名




书目名称Deep Learning with R被引频次




书目名称Deep Learning with R被引频次学科排名




书目名称Deep Learning with R年度引用




书目名称Deep Learning with R年度引用学科排名




书目名称Deep Learning with R读者反馈




书目名称Deep Learning with R读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:53:12 | 显示全部楼层
Springer Nature Singapore Pte Ltd. 2019
发表于 2025-3-22 02:27:13 | 显示全部楼层
发表于 2025-3-22 04:38:47 | 显示全部楼层
发表于 2025-3-22 12:00:33 | 显示全部楼层
发表于 2025-3-22 15:52:52 | 显示全部楼层
发表于 2025-3-22 19:28:21 | 显示全部楼层
http://image.papertrans.cn/d/image/264636.jpg
发表于 2025-3-22 23:36:45 | 显示全部楼层
发表于 2025-3-23 04:13:52 | 显示全部楼层
Overview: Background and ApplicationsIn this chapter, we will discuss the basic architecture of neural networks including activation functions, ., and .. We will also create a simple neural network model from scratch using the . activation function. In particular, this chapter will discuss:
发表于 2025-3-23 07:44:17 | 显示全部楼层
Spezielle Zielgruppen und Lernziele,In this section we will learn the foundations of deep learning and how deep learning actually works. In particular, we will discuss.We will also construct a deep learning algorithm from scratch.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 06:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表