找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning in Smart eHealth Systems; Evaluation Leveragin Asma Channa,Nirvana Popescu Book 2024 The Editor(s) (if applicable) and The Au

[复制链接]
查看: 16620|回复: 38
发表于 2025-3-21 18:28:58 | 显示全部楼层 |阅读模式
书目名称Deep Learning in Smart eHealth Systems
副标题Evaluation Leveragin
编辑Asma Channa,Nirvana Popescu
视频video
概述Combines state-of-the-art technology with clinical expertise to develop a personalized and efficient evaluation.Presents a new eHealth framework using Deep Learning and IoT wearable devices to assess
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Deep Learning in Smart eHealth Systems; Evaluation Leveragin Asma Channa,Nirvana Popescu Book 2024 The Editor(s) (if applicable) and The Au
描述.One of the main benefits of this book is that it presents a comprehensive and innovative eHealth framework that leverages deep learning and IoT wearable devices for the evaluation of Parkinson‘s disease patients. This framework offers a new way to assess and monitor patients‘ motor deficits in a personalized and automated way, improving the efficiency and accuracy of diagnosis and treatment..Compared to other books on eHealth and Parkinson‘s disease, this book offers a unique perspective and solution to the challenges facing patients and healthcare providers. It combines state-of-the-art technology, such as wearable devices and deep learning algorithms, with clinical expertise to develop a personalized and efficient evaluation framework for Parkinson‘s disease patients..This book provides a roadmap for the integration of cutting-edge technology into clinical practice, paving the way for more effective and patient-centered healthcare. To understand this book, readers should have a basic knowledge of eHealth, IoT, deep learning, and Parkinson‘s disease. However, the book provides clear explanations and examples to make the content accessible to a wider audience, including researcher
出版日期Book 2024
关键词A-WEAR Bracelet; Cloud Platform; Continuous Wavelet Transform; Convolutional Neural Network; Deep Learni
版次1
doihttps://doi.org/10.1007/978-3-031-45003-7
isbn_softcover978-3-031-45002-0
isbn_ebook978-3-031-45003-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Deep Learning in Smart eHealth Systems影响因子(影响力)




书目名称Deep Learning in Smart eHealth Systems影响因子(影响力)学科排名




书目名称Deep Learning in Smart eHealth Systems网络公开度




书目名称Deep Learning in Smart eHealth Systems网络公开度学科排名




书目名称Deep Learning in Smart eHealth Systems被引频次




书目名称Deep Learning in Smart eHealth Systems被引频次学科排名




书目名称Deep Learning in Smart eHealth Systems年度引用




书目名称Deep Learning in Smart eHealth Systems年度引用学科排名




书目名称Deep Learning in Smart eHealth Systems读者反馈




书目名称Deep Learning in Smart eHealth Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:24:46 | 显示全部楼层
发表于 2025-3-22 02:04:47 | 显示全部楼层
,Design and Engineering of a Medical Wearable Device for Parkinson’s Disease Management,of PD stages and disease progression, especially concerning tremor and bradykinesia. This chapter endeavors to craft a holistic ecosystem capable of capturing motion data associated with PD and securely transmitting it to the cloud for storage, data processing, and severity estimation, all facilitat
发表于 2025-3-22 04:54:46 | 显示全部楼层
,Deep Learning Models for Parkinson’s Disease Severity Evaluation,ignals are analyzed using the CatBoost classifier. This approach yields an impressive accuracy rate of 96%. The findings of this study substantially contribute to the development of a reliable and accurate framework for assessing PD severity.
发表于 2025-3-22 12:28:13 | 显示全部楼层
Conclusion and Prospects for Further Development,nd support offered to prevailing theories and models in the field of PD monitoring. It highlights the creation of an objective monitoring system for assessing PD symptoms, which employs meticulous preprocessing, feature extraction, and model evaluation techniques.
发表于 2025-3-22 16:54:27 | 显示全部楼层
Determinanten der Demokratiezufriedenheitof PD stages and disease progression, especially concerning tremor and bradykinesia. This chapter endeavors to craft a holistic ecosystem capable of capturing motion data associated with PD and securely transmitting it to the cloud for storage, data processing, and severity estimation, all facilitat
发表于 2025-3-22 18:11:29 | 显示全部楼层
发表于 2025-3-22 21:39:35 | 显示全部楼层
发表于 2025-3-23 04:32:48 | 显示全部楼层
发表于 2025-3-23 05:35:29 | 显示全部楼层
2191-5768 work using Deep Learning and IoT wearable devices to assess .One of the main benefits of this book is that it presents a comprehensive and innovative eHealth framework that leverages deep learning and IoT wearable devices for the evaluation of Parkinson‘s disease patients. This framework offers a ne
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 11:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表