找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M

[复制链接]
楼主: 与生
发表于 2025-3-28 15:59:27 | 显示全部楼层
发表于 2025-3-28 22:21:55 | 显示全部楼层
发表于 2025-3-29 00:01:06 | 显示全部楼层
Deep Learning in Healthcare978-3-030-32606-7Series ISSN 1868-4394 Series E-ISSN 1868-4408
发表于 2025-3-29 03:46:47 | 显示全部楼层
发表于 2025-3-29 09:52:57 | 显示全部楼层
发表于 2025-3-29 11:29:42 | 显示全部楼层
Destillier- und Rektifiziertechnikmon deep learning architectures for image detection are briefly explained, including scanning-based methods and end-to-end detection systems. Some considerations about the training scheme and loss functions are also included. Then, an overview of relevant publications in anatomical and pathological
发表于 2025-3-29 17:52:02 | 显示全部楼层
Erratum to: Theoretische Grundlagen,llenges of medical image segmentation, for which actual approaches to overcome those limitations are discussed. Secondly, supervised and semi-supervised architectures are described, where encoder-decoder type networks are the most widely employed ones. Nonetheless, generative adversarial network-bas
发表于 2025-3-29 20:27:54 | 显示全部楼层
Barbara Neuhofer,Lukas Grundnern. In traditional image classification, low-level or mid-level features are extracted to represent the image and a trainable classifier is then used for label assignments. In recent years, the high-level feature representation of deep convolutional neural networks has proven to be superior to hand-c
发表于 2025-3-30 00:51:13 | 显示全部楼层
https://doi.org/10.1007/978-3-658-39879-8 methods about convolutional layer, deconvolution layer, loss function and evaluation functions for beginners to easily understand. Then, typical state-of-the-art super-resolution methods using 2D or 3D convolution neural networks will be introduced. From the experimental results of the network intr
发表于 2025-3-30 06:37:39 | 显示全部楼层
https://doi.org/10.1007/978-3-658-28110-6gh CNNs have achieved state-of-the-art performances, most researches on semantic segmentation using the deep learning methods are in the field of computer vision, so the research on medical images is much less mature than that of natural images, especially, in the field of 3D image segmentation. Our
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 11:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表