找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning for Hyperspectral Image Analysis and Classification; Linmi Tao,Atif Mughees Book 2021 The Editor(s) (if applicable) and The

[复制链接]
查看: 41859|回复: 40
发表于 2025-3-21 18:00:31 | 显示全部楼层 |阅读模式
书目名称Deep Learning for Hyperspectral Image Analysis and Classification
编辑Linmi Tao,Atif Mughees
视频video
概述Proposes adaptive-boundary adjustment-based noise detection and group-wise band categorization with unsupervised spectral-spatial adaptive band-noise factor-based formulation.Presents unsupervised spe
丛书名称Engineering Applications of Computational Methods
图书封面Titlebook: Deep Learning for Hyperspectral Image Analysis and Classification;  Linmi Tao,Atif Mughees Book 2021 The Editor(s) (if applicable) and The
描述.This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly...This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends..
出版日期Book 2021
关键词Remote sensing; Hyperspectral image analysis; Deep learning; Stacked auto-encoder; Deep belief network; S
版次1
doihttps://doi.org/10.1007/978-981-33-4420-4
isbn_softcover978-981-33-4422-8
isbn_ebook978-981-33-4420-4Series ISSN 2662-3366 Series E-ISSN 2662-3374
issn_series 2662-3366
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Deep Learning for Hyperspectral Image Analysis and Classification影响因子(影响力)




书目名称Deep Learning for Hyperspectral Image Analysis and Classification影响因子(影响力)学科排名




书目名称Deep Learning for Hyperspectral Image Analysis and Classification网络公开度




书目名称Deep Learning for Hyperspectral Image Analysis and Classification网络公开度学科排名




书目名称Deep Learning for Hyperspectral Image Analysis and Classification被引频次




书目名称Deep Learning for Hyperspectral Image Analysis and Classification被引频次学科排名




书目名称Deep Learning for Hyperspectral Image Analysis and Classification年度引用




书目名称Deep Learning for Hyperspectral Image Analysis and Classification年度引用学科排名




书目名称Deep Learning for Hyperspectral Image Analysis and Classification读者反馈




书目名称Deep Learning for Hyperspectral Image Analysis and Classification读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:20:18 | 显示全部楼层
发表于 2025-3-22 02:09:49 | 显示全部楼层
Hyperspectral Image Spatial Feature Extraction via Segmentation,tion task as shown in Fig. .. A complete description of all the HSI classification phases is depicted in Chap. 1, Fig. .. This phase aims at the development of a novel unsupervised segmentation approach. Experimental results and comparison with the state-of-the-art existing segmentation approach are also presented in detail.
发表于 2025-3-22 05:17:26 | 显示全部楼层
发表于 2025-3-22 08:52:55 | 显示全部楼层
发表于 2025-3-22 13:41:08 | 显示全部楼层
发表于 2025-3-22 20:16:32 | 显示全部楼层
发表于 2025-3-22 23:23:13 | 显示全部楼层
Sparse-Based Hyperspectral Data Classification,In this section, we restate the sparsest solution problem using a geometric interpretation. Finding the sparsest solution is strictly equivalent to the .-norm problem in Eq. .. Unfortunately, this .-minimization problem is computationally intensive, so we will prove that the following .-minimization approach in Eq. . is a good approximation to it.
发表于 2025-3-23 04:51:10 | 显示全部楼层
发表于 2025-3-23 09:29:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 10:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表