找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Image Computing; Precision Medicine, Le Lu,Yefeng Zheng,Lin Yang Book 2017 Spr

[复制链接]
楼主: minutia
发表于 2025-3-23 12:44:24 | 显示全部楼层
On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imagingodalities, and studied the necessity of fine-tuned CNNs under varying amounts of training data. Second, . In response, we proposed a layer-wise fine-tuning scheme to examine how the extent or depth of fine-tuning contributes to the success of knowledge transfer. Our experiments consistently showed t
发表于 2025-3-23 17:23:43 | 显示全部楼层
发表于 2025-3-23 18:03:33 | 显示全部楼层
Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammogramsgnal-to-noise ratio of their appearance. We address this problem with structured output prediction models that use potential functions based on deep convolution neural network (CNN) and deep belief network (DBN). The two types of structured output prediction models that we study in this work are the
发表于 2025-3-24 00:41:44 | 显示全部楼层
Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local Versus Global Image C disease diagnosis and quantification. However, automatic pathological kidney segmentation is still a challenging task due to large variations in contrast phase, scanning range, pathology, and position in the abdomen, etc. Methods based on global image context (e.g., atlas- or regression-based appro
发表于 2025-3-24 04:02:33 | 显示全部楼层
发表于 2025-3-24 08:26:12 | 显示全部楼层
Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labelingdetection of pathologies, surgical assistance as well as computer-aided diagnosis (CAD). In general, the large variability of organ locations, the spatial interaction between organs that appear similar in medical scans and orientation and size variations are among the major challenges of organ segme
发表于 2025-3-24 12:29:42 | 显示全部楼层
发表于 2025-3-24 17:18:28 | 显示全部楼层
Yuan Feng,Yadie Rao,RongRong Fubility scores for lesions (or pathology). We found that this second stage is a highly selective classifier that is able to reject difficult false positives while retaining good sensitivity rates. The method was evaluated on three data sets (sclerotic metastases, lymph nodes, colonic polyps) with var
发表于 2025-3-24 20:22:04 | 显示全部楼层
发表于 2025-3-24 23:29:58 | 显示全部楼层
Andrea Valente,Emanuela Marchettiegies. In this chapter, we present deep learning based approaches for two challenged tasks in histological image analysis: (1) Automated nuclear atypia scoring (NAS) on breast histopathology. We present a Multi-Resolution Convolutional Network (MR-CN) with Plurality Voting (MR-CN-PV) model for autom
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 05:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表