找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Networks; Design, Development Jayakumar Singaram,S. S. Iyengar,Azad M. Madni Textbook 2024 The Editor(s) (if applicable) and

[复制链接]
楼主: deflate
发表于 2025-3-27 00:56:03 | 显示全部楼层
发表于 2025-3-27 02:15:02 | 显示全部楼层
Other Functions of the Arithmetic Unit,in association with deep learning networks. This section discusses and reveals the computing infrastructure that sits on the edge of a network. More importantly in this section, the chapter reveals the best deployment of deep learning network on IoT edge devices and reveals the benefits of the imple
发表于 2025-3-27 08:44:51 | 显示全部楼层
Other Functions of the Arithmetic Unit, deploying deep learning networks..This tutorial is designed to handle workflow from data set creation, the deep learning model design, training the deep learning model, testing the deep learning model, and deploying the deep learning model in Internet of Things (IoT) edges and also in cloud native
发表于 2025-3-27 10:56:21 | 显示全部楼层
https://doi.org/10.1007/978-3-031-39244-3Deep Learning; Artificial Intelligence (AI); Machine Learning (ML); Data Labeling; Deep Learning Applica
发表于 2025-3-27 14:15:24 | 显示全部楼层
978-3-031-39246-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-27 19:07:58 | 显示全部楼层
发表于 2025-3-28 01:44:40 | 显示全部楼层
发表于 2025-3-28 05:24:01 | 显示全部楼层
Introduction to Software Tool Set,by step with data, operating system, application, hardware, and other auxiliary services. The novelty of this section is describing the detailed practical configuration techniques for setting up of virtual environments with TensorFlow and PyTorch open-source tool in governance with IBM Watson and Ke
发表于 2025-3-28 09:37:23 | 显示全部楼层
发表于 2025-3-28 11:35:30 | 显示全部楼层
Data Set Design and Data Labeling,ok chapter reveals how to read data from audio, speech, image, and text in different modes and techniques for data sanitization and scaled data processing systems. The book also explains statistical methods for interpreting and analyzing data for different deep learning models; the Maxwell-Boltzmann
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 01:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表