找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Architectures; A Mathematical Appro Ovidiu Calin Textbook 2020 Springer Nature Switzerland AG 2020 neural networks.deep learn

[复制链接]
查看: 32606|回复: 57
发表于 2025-3-21 18:23:21 | 显示全部楼层 |阅读模式
书目名称Deep Learning Architectures
副标题A Mathematical Appro
编辑Ovidiu Calin
视频video
概述Contains a fair number of end-of chapter exercises.Full solutions provided to all exercises.Appendices including topics needed in the book exposition
丛书名称Springer Series in the Data Sciences
图书封面Titlebook: Deep Learning Architectures; A Mathematical Appro Ovidiu Calin Textbook 2020 Springer Nature Switzerland AG 2020 neural networks.deep learn
描述.This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter..This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates.  In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.. . . .
出版日期Textbook 2020
关键词neural networks; deep learning; machine learning; Kullback-Leibler divergence; Entropy; Fisher informatio
版次1
doihttps://doi.org/10.1007/978-3-030-36721-3
isbn_softcover978-3-030-36723-7
isbn_ebook978-3-030-36721-3Series ISSN 2365-5674 Series E-ISSN 2365-5682
issn_series 2365-5674
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Deep Learning Architectures影响因子(影响力)




书目名称Deep Learning Architectures影响因子(影响力)学科排名




书目名称Deep Learning Architectures网络公开度




书目名称Deep Learning Architectures网络公开度学科排名




书目名称Deep Learning Architectures被引频次




书目名称Deep Learning Architectures被引频次学科排名




书目名称Deep Learning Architectures年度引用




书目名称Deep Learning Architectures年度引用学科排名




书目名称Deep Learning Architectures读者反馈




书目名称Deep Learning Architectures读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:19:30 | 显示全部楼层
Cost Functionsity between the prediction of the network and the associated target. This is also known under the equivalent names of ., ., or .. In the following we shall describe some of the most familiar cost functions used in neural networks.
发表于 2025-3-22 00:41:02 | 显示全部楼层
发表于 2025-3-22 07:45:17 | 显示全部楼层
Neural Networksyers of neurons, forming .. A layer of neurons is a processing step into a neural network and can be of different types, depending on the weights and activation function used in its neurons (fully-connected layer, convolution layer, pooling layer, etc.) The main part of this chapter will deal with t
发表于 2025-3-22 08:48:42 | 显示全部楼层
Approximation Theoremsapproximation results included in this chapter contain Dini’s theorem, Arzela-Ascoli’s theorem, Stone-Weierstrass theorem, Wiener’s Tauberian theorem, and the contraction principle. Some of their applications to learning will be provided within this chapter, while others will be given in later chapt
发表于 2025-3-22 16:23:08 | 显示全部楼层
发表于 2025-3-22 18:05:36 | 显示全部楼层
Information Representationnd networks using the concept of sigma-algebra. The main idea is to describe the evolution of the information content through the layers of a network. The network’s input is considered to be a random variable, being characterized by a certain information. Consequently, all network layer activations
发表于 2025-3-22 21:21:55 | 显示全部楼层
2365-5674 ates.  In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.. . . .978-3-030-36723-7978-3-030-36721-3Series ISSN 2365-5674 Series E-ISSN 2365-5682
发表于 2025-3-23 02:57:44 | 显示全部楼层
Textbook 2020 universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegan
发表于 2025-3-23 06:07:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 03:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表