找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Approaches to Text Production; Shashi Narayan,Claire Gardent Book 2020 Springer Nature Switzerland AG 2020

[复制链接]
查看: 29223|回复: 38
发表于 2025-3-21 16:22:35 | 显示全部楼层 |阅读模式
书目名称Deep Learning Approaches to Text Production
编辑Shashi Narayan,Claire Gardent
视频video
丛书名称Synthesis Lectures on Human Language Technologies
图书封面Titlebook: Deep Learning Approaches to Text Production;  Shashi Narayan,Claire Gardent Book 2020 Springer Nature Switzerland AG 2020
描述.Text production has many applications. It is used, for instance, to generate dialogue turns from dialogue moves, verbalise the content of knowledge bases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and text summarisation. This book offers an overview of the fundamentals of neural models for text production. In particular, we elaborate on three main aspects of neural approaches to text production: how sequential decoders learn to generate adequate text, how encoders learn to produce better input representations, and how neural generators account for task-specific objectives. Indeed, eachtext-production task raises a slightly different challenge (e.g, how to take the dialogue context into account when producing a dialogue turn, how to detect and merge relevant information when summarising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation).
出版日期Book 2020
版次1
doihttps://doi.org/10.1007/978-3-031-02173-2
isbn_softcover978-3-031-01045-3
isbn_ebook978-3-031-02173-2Series ISSN 1947-4040 Series E-ISSN 1947-4059
issn_series 1947-4040
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Deep Learning Approaches to Text Production影响因子(影响力)




书目名称Deep Learning Approaches to Text Production影响因子(影响力)学科排名




书目名称Deep Learning Approaches to Text Production网络公开度




书目名称Deep Learning Approaches to Text Production网络公开度学科排名




书目名称Deep Learning Approaches to Text Production被引频次




书目名称Deep Learning Approaches to Text Production被引频次学科排名




书目名称Deep Learning Approaches to Text Production年度引用




书目名称Deep Learning Approaches to Text Production年度引用学科排名




书目名称Deep Learning Approaches to Text Production读者反馈




书目名称Deep Learning Approaches to Text Production读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:02:09 | 显示全部楼层
发表于 2025-3-22 03:43:49 | 显示全部楼层
发表于 2025-3-22 05:21:04 | 显示全部楼层
发表于 2025-3-22 09:34:15 | 显示全部楼层
发表于 2025-3-22 14:53:27 | 显示全部楼层
发表于 2025-3-22 18:06:12 | 显示全部楼层
Modelling Task-Specific Communication Goals, we will discuss how communication goal-oriented generators can be useful for text production. In particular, we will focus on generators that are specifically trained for summarisation, simplification, to profile user for dialogue-response generation, or to generate from loosely aligned data.
发表于 2025-3-22 23:56:51 | 显示全部楼层
Book 2020ases, or generate English sentences from rich linguistic representations, such as dependency trees or abstract meaning representations. Text production is also at work in text-to-text transformations such as sentence compression, sentence fusion, paraphrasing, sentence (or text) simplification, and
发表于 2025-3-23 02:24:05 | 显示全部楼层
1947-4040 ising a text, or how to produce a well-formed text that correctly captures the information contained in some input data in the case of data-to-text generation).978-3-031-01045-3978-3-031-02173-2Series ISSN 1947-4040 Series E-ISSN 1947-4059
发表于 2025-3-23 09:23:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 10:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表