找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep In-memory Architectures for Machine Learning; Mingu Kang,Sujan Gonugondla,Naresh R. Shanbhag Book 2020 Springer Nature Switzerland AG

[复制链接]
查看: 47342|回复: 43
发表于 2025-3-21 20:08:21 | 显示全部楼层 |阅读模式
书目名称Deep In-memory Architectures for Machine Learning
编辑Mingu Kang,Sujan Gonugondla,Naresh R. Shanbhag
视频video
概述Describes deep in-memory architectures for AI systems from first principles, covering both circuit design and architectures.Discusses how DIMAs pushes the limits of energy-delay product of decision-ma
图书封面Titlebook: Deep In-memory Architectures for Machine Learning;  Mingu Kang,Sujan Gonugondla,Naresh R. Shanbhag Book 2020 Springer Nature Switzerland AG
描述.This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware..
出版日期Book 2020
关键词machine learning in hardware; analog in-memory architectures; Deep In-memory Architecture; Shannon-insp
版次1
doihttps://doi.org/10.1007/978-3-030-35971-3
isbn_softcover978-3-030-35973-7
isbn_ebook978-3-030-35971-3
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Deep In-memory Architectures for Machine Learning影响因子(影响力)




书目名称Deep In-memory Architectures for Machine Learning影响因子(影响力)学科排名




书目名称Deep In-memory Architectures for Machine Learning网络公开度




书目名称Deep In-memory Architectures for Machine Learning网络公开度学科排名




书目名称Deep In-memory Architectures for Machine Learning被引频次




书目名称Deep In-memory Architectures for Machine Learning被引频次学科排名




书目名称Deep In-memory Architectures for Machine Learning年度引用




书目名称Deep In-memory Architectures for Machine Learning年度引用学科排名




书目名称Deep In-memory Architectures for Machine Learning读者反馈




书目名称Deep In-memory Architectures for Machine Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:51:58 | 显示全部楼层
发表于 2025-3-22 01:25:49 | 显示全部楼层
DIMA Prototype Integrated Circuits,is a multi-functional DIMA that implements four different machine learning algorithms—the support vector machine (SVM), template matching (TM), .-nearest neighbor (.-NN), and matched filter (MF), thereby demonstrating DIMA’s versatility. The second IC implements the random forest (RF) algorithm whic
发表于 2025-3-22 06:40:03 | 显示全部楼层
发表于 2025-3-22 11:33:17 | 显示全部楼层
发表于 2025-3-22 16:45:18 | 显示全部楼层
PROMISE: A DIMA-Based Accelerator,nts a DIMA-based accelerator called PROMISE, which realizes a high level of programmability for diverse ML algorithms without noticeably losing the efficiency of mixed-signal accelerators for specific ML algorithms. PROMISE exposes instruction set mechanisms that allow software control over energy-v
发表于 2025-3-22 17:42:43 | 显示全部楼层
发表于 2025-3-22 23:39:55 | 显示全部楼层
发表于 2025-3-23 01:33:38 | 显示全部楼层
Hasso Plattner,Christoph Meinel,Larry Leiferficiency of mixed-signal accelerators for specific ML algorithms. PROMISE exposes instruction set mechanisms that allow software control over energy-vs-accuracy trade-offs, and supports compilation of high-level languages down to the hardware.
发表于 2025-3-23 08:30:57 | 显示全部楼层
Book 2020y trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 01:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表