找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Generative Models; Third MICCAI Worksho Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2024 The Editor(s) (if app

[复制链接]
查看: 19656|回复: 57
发表于 2025-3-21 18:55:04 | 显示全部楼层 |阅读模式
书目名称Deep Generative Models
副标题Third MICCAI Worksho
编辑Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Deep Generative Models; Third MICCAI Worksho Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2024 The Editor(s) (if app
描述This LNCS conference volume constitutes the proceedings of the third MICCAI Workshop, DGM4MICCAI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 2023. The 23 full papers included in this volume were carefully reviewed and selected from 38 submissions..The conference presents topics ranging from methodology, causal inference, latent interpretation, generative factor analysis to applications such as mammography, vessel imaging, and surgical..Videos. .
出版日期Conference proceedings 2024
关键词Artificial Intelligence; bioinformatics; color image processing; color images; computer vision
版次1
doihttps://doi.org/10.1007/978-3-031-53767-7
isbn_softcover978-3-031-53766-0
isbn_ebook978-3-031-53767-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Deep Generative Models影响因子(影响力)




书目名称Deep Generative Models影响因子(影响力)学科排名




书目名称Deep Generative Models网络公开度




书目名称Deep Generative Models网络公开度学科排名




书目名称Deep Generative Models被引频次




书目名称Deep Generative Models被引频次学科排名




书目名称Deep Generative Models年度引用




书目名称Deep Generative Models年度引用学科排名




书目名称Deep Generative Models读者反馈




书目名称Deep Generative Models读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:49:57 | 显示全部楼层
发表于 2025-3-22 00:25:31 | 显示全部楼层
ViT-DAE: Transformer-Driven Diffusion Autoencoder for Histopathology Image AnalysisViT) and diffusion autoencoders for high-quality histopathology image synthesis. This marks the first time that ViT has been introduced to diffusion autoencoders in computational pathology, allowing the model to better capture the complex and intricate details of histopathology images. We demonstrat
发表于 2025-3-22 06:37:11 | 显示全部楼层
Importance of Aligning Training Strategy with Evaluation for Diffusion Models in 3D Multiclass Segmen-test discrepancy, including performing mask prediction, using Dice loss, and reducing the number of diffusion time steps during training. The performance of diffusion models was also competitive and visually similar to non-diffusion-based U-net, within the same compute budget. The JAX-based diffus
发表于 2025-3-22 08:57:51 | 显示全部楼层
发表于 2025-3-22 14:42:34 | 显示全部楼层
发表于 2025-3-22 20:51:50 | 显示全部楼层
发表于 2025-3-23 00:45:53 | 显示全部楼层
发表于 2025-3-23 03:27:04 | 显示全部楼层
Shape-Guided Conditional Latent Diffusion Models for Synthesising Brain Vasculaturebserved that our model generated CoW variants that are more realistic and demonstrate higher visual fidelity than competing approaches with an FID score 53% better than the best-performing GAN-based model.
发表于 2025-3-23 05:33:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-30 23:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表