找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Belief Nets in C++ and CUDA C: Volume 2; Autoencoding in the Timothy Masters Book 2018 Timothy Masters 2018 C++.CUDA C.AI.artificial

[复制链接]
查看: 21985|回复: 35
发表于 2025-3-21 18:28:19 | 显示全部楼层 |阅读模式
书目名称Deep Belief Nets in C++ and CUDA C: Volume 2
副标题Autoencoding in the
编辑Timothy Masters
视频video
概述A practical book with source code and algorithms on deep learning with C++ and CUDA C.Second of three books in a series on C++ and CUDA C deep learning and belief nets.Author is an authority on numeri
图书封面Titlebook: Deep Belief Nets in C++ and CUDA C: Volume 2; Autoencoding in the  Timothy Masters Book 2018 Timothy Masters 2018 C++.CUDA C.AI.artificial
描述Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You’ll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. .Deep Belief Nets in C++ and CUDA C: Volume 2 .also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you’ll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. .At each step this book. .provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. .What You‘ll Learn.Code for deep learning, neural networks, and AI using C++ and CUDA C.Car
出版日期Book 2018
关键词C++; CUDA C; AI; artificial intel; machine learning; deep learning; programming; algorithms; numerical; compu
版次1
doihttps://doi.org/10.1007/978-1-4842-3646-8
isbn_softcover978-1-4842-3645-1
isbn_ebook978-1-4842-3646-8
copyrightTimothy Masters 2018
The information of publication is updating

书目名称Deep Belief Nets in C++ and CUDA C: Volume 2影响因子(影响力)




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2影响因子(影响力)学科排名




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2网络公开度




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2网络公开度学科排名




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2被引频次




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2被引频次学科排名




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2年度引用




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2年度引用学科排名




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2读者反馈




书目名称Deep Belief Nets in C++ and CUDA C: Volume 2读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:07:04 | 显示全部楼层
发表于 2025-3-22 02:31:58 | 显示全部楼层
Image Preprocessing,h it is an important one whose computational details are often glossed over in other references. Here we will downplay the deep theory, which is widely available, and focus on the practical implementation details, which are not so widely available.
发表于 2025-3-22 08:19:25 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-3646-8C++; CUDA C; AI; artificial intel; machine learning; deep learning; programming; algorithms; numerical; compu
发表于 2025-3-22 08:58:45 | 显示全部楼层
Lionel Bercovitch,Clifford Perlise. This is especially true when the model is processing signals or images, which by nature have a visual representation. If the developer can study examples of the features that the model is associating with each class, this lucky developer may be clued in to strengths and weaknesses of the model. In this chapter, we will see how this can be done.
发表于 2025-3-22 14:12:45 | 显示全部楼层
发表于 2025-3-22 17:55:12 | 显示全部楼层
发表于 2025-3-23 00:52:11 | 显示全部楼层
Timothy MastersA practical book with source code and algorithms on deep learning with C++ and CUDA C.Second of three books in a series on C++ and CUDA C deep learning and belief nets.Author is an authority on numeri
发表于 2025-3-23 03:14:05 | 显示全部楼层
http://image.papertrans.cn/d/image/264523.jpg
发表于 2025-3-23 07:36:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-27 03:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表