找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Decision Technologies for Computational Finance; Proceedings of the f Apostolos-Paul N. Refenes,Andrew N. Burgess,John E Conference proceed

[复制链接]
楼主: Nonchalant
发表于 2025-3-25 06:13:44 | 显示全部楼层
发表于 2025-3-25 08:29:08 | 显示全部楼层
发表于 2025-3-25 12:32:49 | 显示全部楼层
https://doi.org/10.1057/978-1-349-93358-7erfectly correlated, thus motivating the use of a population-based algorithm which jointly optimises a portfolio of decorrelated models. We describe an application of this methodology to trading statistical arbitrage between equity index futures and present empirical results, before concluding with
发表于 2025-3-25 18:16:30 | 显示全部楼层
发表于 2025-3-25 23:27:40 | 显示全部楼层
发表于 2025-3-26 01:33:42 | 显示全部楼层
发表于 2025-3-26 04:43:03 | 显示全部楼层
发表于 2025-3-26 08:32:55 | 显示全部楼层
发表于 2025-3-26 14:35:03 | 显示全部楼层
Controlling Nonstationarity in Statistical Arbitrage Using a Portfolio of Cointegration Modelserfectly correlated, thus motivating the use of a population-based algorithm which jointly optimises a portfolio of decorrelated models. We describe an application of this methodology to trading statistical arbitrage between equity index futures and present empirical results, before concluding with
发表于 2025-3-26 17:38:40 | 显示全部楼层
Multi-Task Learning in a Neural Vector Error Correction Approach for Exchange Rate Forecastingerent, yet related, tasks simultaneously, underlying interdependencies between the various learning outputs can be exploited. The paper presents a neural Vector Error Correction approach with multiple output units as a Multi-Task Learning methodology of practical use in finance. By focusing on forec
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 10:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表