找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: De Rham Cohomology of Differential Modules on Algebraic Varieties; Yves André,Francesco Baldassarri Book 20011st edition Springer Basel AG

[复制链接]
查看: 49759|回复: 35
发表于 2025-3-21 16:20:27 | 显示全部楼层 |阅读模式
书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties
编辑Yves André,Francesco Baldassarri
视频video
丛书名称Progress in Mathematics
图书封面Titlebook: De Rham Cohomology of Differential Modules on Algebraic Varieties;  Yves André,Francesco Baldassarri Book 20011st edition Springer Basel AG
描述This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ­ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case
出版日期Book 20011st edition
关键词Dimension; Divisor; Geometrie; Grad; algebra; algebraic geometry; algebraic varieties
版次1
doihttps://doi.org/10.1007/978-3-0348-8336-8
isbn_ebook978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel AG 2001
The information of publication is updating

书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties影响因子(影响力)




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties影响因子(影响力)学科排名




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties网络公开度




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties网络公开度学科排名




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties被引频次




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties被引频次学科排名




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties年度引用




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties年度引用学科排名




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties读者反馈




书目名称De Rham Cohomology of Differential Modules on Algebraic Varieties读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:18:37 | 显示全部楼层
发表于 2025-3-22 03:17:21 | 显示全部楼层
0743-1643 t of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-22 06:36:32 | 显示全部楼层
发表于 2025-3-22 09:32:33 | 显示全部楼层
发表于 2025-3-22 16:05:18 | 显示全部楼层
发表于 2025-3-22 19:40:26 | 显示全部楼层
De Rham Cohomology of Differential Modules on Algebraic Varieties978-3-0348-8336-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-22 22:16:08 | 显示全部楼层
https://doi.org/10.1007/978-3-031-31801-6sult is a particularly simple proof of the Grothendieck-Deligne comparison theorem (algebraic versus complex-analytic De Rham cohomology with regular coefficients [G1], [De]). As a corollary, we obtain an elementary proof of Riemann’s existence theorem for coverings, in higher dimensions.
发表于 2025-3-23 03:23:57 | 显示全部楼层
https://doi.org/10.1007/978-3-031-31801-6The central topic of this chapter is the notion of regularity in several variables. For an algebraic integrable connection ∇ on the complement of a divisor Z in an algebraic variety.the notion of regularity along Z may be defined, or characterized, in at least four different algebraic ways:
发表于 2025-3-23 07:27:09 | 显示全部楼层
https://doi.org/10.1007/978-3-031-31801-6In this chapter, we tackle the study of irregularity in several variables. This domain is far less explored than the island of regularity.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 06:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表