找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Databases Theory and Applications; 28th Australasian Da Zi Huang,Xiaokui Xiao,Xin Cao Conference proceedings 2017 Springer International Pu

[复制链接]
楼主: 娱乐某人
发表于 2025-3-26 23:47:21 | 显示全部楼层
发表于 2025-3-27 01:53:27 | 显示全部楼层
发表于 2025-3-27 05:52:35 | 显示全部楼层
发表于 2025-3-27 09:37:47 | 显示全部楼层
发表于 2025-3-27 14:06:18 | 显示全部楼层
发表于 2025-3-27 19:59:38 | 显示全部楼层
发表于 2025-3-27 22:54:39 | 显示全部楼层
发表于 2025-3-28 03:47:12 | 显示全部楼层
Efficient Supervised Hashing via Exploring Local and Inner Data Structure similarity by leveraging pair-wise supervised knowledge. Besides, we integrate discrete constraint to significantly eliminate accumulated errors in learning reliable hash codes and hash functions. We devise an alternative algorithm to efficiently solve the optimization problem. Extensive experiment
发表于 2025-3-28 07:51:30 | 显示全部楼层
Learning Robust Graph Hashing for Efficient Similarity Searchn and hashing learning into a unified learning framework. The learning process ensures the optimal graph to be constructed for subsequent hashing learning, and simultaneously the hashing codes can well preserve similarities of data samples. An effective optimization method is devised to iteratively
发表于 2025-3-28 14:26:35 | 显示全部楼层
A New Data Mining Scheme for Analysis of Big Brain Signal Datas (e.g. mean, standard deviation) are computed from the extracted pattern. Then aggregating all of the features extracted from each of the patterns in a subject, a feature vector set is created that is fed into random forest (RF) and random tree (RT) classification model, individually for classifyin
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 02:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表