找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[复制链接]
楼主: panache
发表于 2025-3-23 11:46:24 | 显示全部楼层
https://doi.org/10.1057/978-1-137-53913-7aptive weight to emphasize the importance of few-shot users. We simulate the few-shot recommendation problem on three real-world datasets and extensive results show that SANS can outperform the state-of-the-art recommendation algorithms in few-shot recommendation.
发表于 2025-3-23 16:31:30 | 显示全部楼层
发表于 2025-3-23 20:00:58 | 显示全部楼层
Introduction: American Fiction Abroad,s. Moreover, to better capture user preference and model news lifecycle, we present a User Preference LSTM and a News Lifecycle LSTM to extract sequential correlations from news representations and additional features. Extensive experimental results on two real-world news datasets demonstrate the si
发表于 2025-3-24 01:19:03 | 显示全部楼层
Introduction: American Fiction Abroad,references that can be hit more quickly and accurately. Finally, SeqCR utilizes the policy network to decide whether to recommend or ask. We conduct extensive experiments on two datasets from MovieLens 10M and Yelp in multi-round conversational recommendation scenarios. Empirical results demonstrate
发表于 2025-3-24 03:07:47 | 显示全部楼层
https://doi.org/10.1007/978-3-030-94166-6based neighbors in hyperedge efficiently. Moreover, it can conduct the embedding propagation of high-order correlations explicitly and efficiently in knowledge-aware hypergraph. Finally, we apply the proposed model on three real-world datasets, and the empirical results demonstrate that KHNN can ach
发表于 2025-3-24 09:21:27 | 显示全部楼层
发表于 2025-3-24 11:09:19 | 显示全部楼层
发表于 2025-3-24 18:04:02 | 显示全部楼层
发表于 2025-3-24 20:41:55 | 显示全部楼层
发表于 2025-3-25 01:21:23 | 显示全部楼层
Contemporary American Memoirs in Actionork to capture user interest drift across sessions. The other is a Multi-user Identification (MI) module, which draws on the attention mechanism to distinguish behaviors of different users under the same account. To verify the effectiveness of MISS, we construct two data sets with shared account cha
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 11:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表