找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; 28th International C Xin Wang,Maria Luisa Sapino,Hongzhi Yin Conference proceedings 2023 The Ed

[复制链接]
楼主: 难受
发表于 2025-3-23 11:29:15 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-8156-1c. However, it is hard to make a precise estimation, which is not only related with the physical join implementations (hash, sort, loop) but also with the corresponding parameters, like the size of the data, the number of partitions, the number of threads in a modern hash join. Existing works rely o
发表于 2025-3-23 14:05:43 | 显示全部楼层
发表于 2025-3-23 19:13:18 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-3211-6on-Gaussian and non-linear properties. Many businesses rely on accurate TS forecasting, under these complications, to help with operational efficiencies. In this paper, we present a novel approach for Hierarchical Time Series (HTS) prediction via trainable attentive reconciliation and Normalizing Fl
发表于 2025-3-23 23:39:24 | 显示全部楼层
发表于 2025-3-24 02:44:26 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-3211-6st and accurate MTS anomaly detection methods to support fast troubleshooting in cloud computing, micro-service systems, etc. . is fast in the sense that it reduces the training time by as high as 38.2% compared to the state-of-the-art (SOTA) deep learning methods that focus on training speed. . is
发表于 2025-3-24 07:17:07 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-3211-6ns of the repaired time series, along with the raw time series, are often stored directly in the system for the users. However, as the scale of data explodes, high storage cost becomes a non-negligible problem. To address this problem, we propose RpDelta, a repaired time series storage strategy, und
发表于 2025-3-24 13:52:48 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-3211-6search, trend analysis, and forecasting. In practice, unsupervised learning is strongly preferred owing to sparse labeling. Most existing studies focus on the representation of independent subseries and do not take into consideration the relationships among different subseries. In certain situations
发表于 2025-3-24 14:52:09 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-3211-6d into key points detection tasks due to their significant representation learning ability. However, in contrast to common time series classification and prediction tasks, the target key points correspond to significantly different time-series patterns and account for an extremely small proportion i
发表于 2025-3-24 19:39:29 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-3211-6ped to uncover the anomaly instances from data. However, the labelled data is always limited and costly for real applications, which adds to the difficulty of identifying various anomalies in multivariate time series. In this paper, we propose a novel active anomaly detection method with sparse neur
发表于 2025-3-25 02:51:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 21:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表