找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data-driven Detection and Diagnosis of Faults in Traction Systems of High-speed Trains; Hongtian Chen,Bin Jiang,Wen Chen Book 2020 The Edi

[复制链接]
楼主: cobble
发表于 2025-3-23 11:43:15 | 显示全部楼层
发表于 2025-3-23 14:53:34 | 显示全部楼层
发表于 2025-3-23 19:39:19 | 显示全部楼层
https://doi.org/10.1007/978-3-030-46263-5Data-driven Methods; Fault Detection and Diagnosis; Traction Systems; High-speed Trains; Principal Compo
发表于 2025-3-24 00:41:30 | 显示全部楼层
发表于 2025-3-24 02:40:14 | 显示全部楼层
发表于 2025-3-24 09:49:00 | 显示全部楼层
发表于 2025-3-24 11:10:26 | 显示全部楼层
发表于 2025-3-24 18:41:21 | 显示全部楼层
Deep PCA-Based FDD MethodsThis chapter develops a real-time incipient FDD method named deep PCA (DPCA) for traction systems in high-speed trains. This scheme adopting multivariate statistics is composed of multiple data processing layers to extract more accurate signal features of traction systems.
发表于 2025-3-24 19:11:05 | 显示全部楼层
PCA and Kullback-Leibler Divergence-Based FDD MethodsThis chapter presents an improved incipient FD method based on Kullback-Leibler divergence (KLD) under multivariate statistical analysis frame. Different from the traditional MVA-based FD methods, this methodology can detect slight anomalous behaviors by comparing the PDF online with the reference PDF obtained from large scale off-line datasets.
发表于 2025-3-24 23:47:41 | 显示全部楼层
PCA and Hellinger Distance-Based FDD MethodsIncipient faults in high-speed trains are usually masked by noises and disturbances from both process and sensors, which severely increases the difficulty of incipient FDD tasks.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-19 05:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表