用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data-Intensive Text Processing with MapReduce; Jimmy Lin,Chris Dyer Book 2010 Springer Nature Switzerland AG 2010

[复制链接]
查看: 39686|回复: 39
发表于 2025-3-21 16:44:17 | 显示全部楼层 |阅读模式
书目名称Data-Intensive Text Processing with MapReduce
编辑Jimmy Lin,Chris Dyer
视频video
丛书名称Synthesis Lectures on Human Language Technologies
图书封面Titlebook: Data-Intensive Text Processing with MapReduce;  Jimmy Lin,Chris Dyer Book 2010 Springer Nature Switzerland AG 2010
描述Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion ofMapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapRedu
出版日期Book 2010
版次1
doihttps://doi.org/10.1007/978-3-031-02136-7
isbn_softcover978-3-031-01008-8
isbn_ebook978-3-031-02136-7Series ISSN 1947-4040 Series E-ISSN 1947-4059
issn_series 1947-4040
copyrightSpringer Nature Switzerland AG 2010
The information of publication is updating

书目名称Data-Intensive Text Processing with MapReduce影响因子(影响力)




书目名称Data-Intensive Text Processing with MapReduce影响因子(影响力)学科排名




书目名称Data-Intensive Text Processing with MapReduce网络公开度




书目名称Data-Intensive Text Processing with MapReduce网络公开度学科排名




书目名称Data-Intensive Text Processing with MapReduce被引频次




书目名称Data-Intensive Text Processing with MapReduce被引频次学科排名




书目名称Data-Intensive Text Processing with MapReduce年度引用




书目名称Data-Intensive Text Processing with MapReduce年度引用学科排名




书目名称Data-Intensive Text Processing with MapReduce读者反馈




书目名称Data-Intensive Text Processing with MapReduce读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:45:27 | 显示全部楼层
Graph Algorithms,e of web page quality based on the structure of hyperlinks, which is used in ranking results for web search. As one of the first applications of MapReduce, PageRank exemplifies a large class of graph algorithms that can be concisely captured in the programming model. We will discuss PageRank in deta
发表于 2025-3-22 01:13:28 | 显示全部楼层
发表于 2025-3-22 07:37:33 | 显示全部楼层
发表于 2025-3-22 12:21:21 | 显示全部楼层
发表于 2025-3-22 14:03:32 | 显示全部楼层
发表于 2025-3-22 18:58:07 | 显示全部楼层
Synthesis Lectures on Human Language Technologieshttp://image.papertrans.cn/d/image/263325.jpg
发表于 2025-3-23 00:49:10 | 显示全部楼层
Data-Intensive Text Processing with MapReduce978-3-031-02136-7Series ISSN 1947-4040 Series E-ISSN 1947-4059
发表于 2025-3-23 04:48:53 | 显示全部楼层
978-3-031-01008-8Springer Nature Switzerland AG 2010
发表于 2025-3-23 06:59:09 | 显示全部楼层
Concerted European Action on Magnets (CEAM)ta processing on clusters of commodity servers. It was originally developed by Google and built on well-known principles in parallel and distributed processing dating back several decades. MapReduce has since enjoyed widespread adoption via an open-source implementation called Hadoop, whose developm
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-14 01:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表