找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Wrangling with R; Bradley C. Boehmke, Ph.D. Book 2016 Springer International Publishing Switzerland 2016 R.data wrangling.data struct

[复制链接]
查看: 34280|回复: 53
发表于 2025-3-21 16:46:26 | 显示全部楼层 |阅读模式
书目名称Data Wrangling with R
编辑Bradley C. Boehmke, Ph.D.
视频video
概述Presents techniques that allow users to spend less time obtaining, cleaning, manipulating, and preprocessing data and more time visualizing, analyzing, and presenting data via a step-by-step tutorial
丛书名称Use R!
图书封面Titlebook: Data Wrangling with R;  Bradley C. Boehmke, Ph.D. Book 2016 Springer International Publishing Switzerland 2016 R.data wrangling.data struct
描述.This guide for practicing statisticians, data scientists, and R users and programmers will teach the essentials of preprocessing: data leveraging the R programming language to easily and quickly turn noisy data into usable pieces of information. Data wrangling, which is also commonly referred to as data munging, transformation, manipulation, janitor work, etc., can be a painstakingly laborious process. Roughly 80% of data analysis is spent on cleaning and preparing data; however, being a prerequisite to the rest of the data analysis workflow (visualization, analysis, reporting), it is essential that one become fluent and efficient in data wrangling techniques..This book will guide the user through the data wrangling process via a step-by-step tutorial approach and provide a solid foundation for working with data in R. The author‘s goal is to teach the user how to easily wrangle data in order to spend more time on understanding the content of the data. By the end of the book, the user will have learned: .How to work with different types of data such as numerics, characters, regular expressions, factors, and dates.The difference between different data structures and how to create, a
出版日期Book 2016
关键词R; data wrangling; data structures; dplyr; tidyr; importing; scraping; exporting; coding; data frames; data ma
版次1
doihttps://doi.org/10.1007/978-3-319-45599-0
isbn_softcover978-3-319-45598-3
isbn_ebook978-3-319-45599-0Series ISSN 2197-5736 Series E-ISSN 2197-5744
issn_series 2197-5736
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Data Wrangling with R影响因子(影响力)




书目名称Data Wrangling with R影响因子(影响力)学科排名




书目名称Data Wrangling with R网络公开度




书目名称Data Wrangling with R网络公开度学科排名




书目名称Data Wrangling with R被引频次




书目名称Data Wrangling with R被引频次学科排名




书目名称Data Wrangling with R年度引用




书目名称Data Wrangling with R年度引用学科排名




书目名称Data Wrangling with R读者反馈




书目名称Data Wrangling with R读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:36:22 | 显示全部楼层
978-3-319-45598-3Springer International Publishing Switzerland 2016
发表于 2025-3-22 02:00:34 | 显示全部楼层
Maryam Chinipardaz,Mehdi DehghanIn this chapter you will learn the basics of working with numbers in R. This includes understanding how to manage the numeric type (integer vs. double), the different ways of generating non-random and random numbers, how to set seed values for reproducible random number generation, and the different ways to compare and round numeric values.
发表于 2025-3-22 05:49:39 | 显示全部楼层
发表于 2025-3-22 11:15:41 | 显示全部楼层
发表于 2025-3-22 13:27:47 | 显示全部楼层
Dealing with NumbersIn this chapter you will learn the basics of working with numbers in R. This includes understanding how to manage the numeric type (integer vs. double), the different ways of generating non-random and random numbers, how to set seed values for reproducible random number generation, and the different ways to compare and round numeric values.
发表于 2025-3-22 17:30:37 | 显示全部楼层
Data Structure BasicsPrior to jumping into the data structures, it’s beneficial to understand two components of data structures - the structure and attributes.
发表于 2025-3-22 23:50:34 | 显示全部楼层
Dealing with Missing ValuesA common task in data analysis is dealing with missing values. In R, missing values are often represented by . or some other value that represents missing values (i.e. .). We can easily work with missing values and in this chapter I illustrate how to test for, recode, and exclude missing values in your data.
发表于 2025-3-23 04:47:33 | 显示全部楼层
https://doi.org/10.1007/978-3-319-59767-6 In spite of advances in technologies for working with data, analysts still spend an inordinate amount of time obtaining data, diagnosing data quality issues and pre-processing data into a usable form. Research has illustrated that this portion of the data analysis process is the most tedious and ti
发表于 2025-3-23 09:15:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 14:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表