找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Stream Mining & Processing; Third International Sergii Babichev,Dmytro Peleshko,Olena Vynokurova Conference proceedings 2020 Springer

[复制链接]
查看: 30059|回复: 65
发表于 2025-3-21 19:47:48 | 显示全部楼层 |阅读模式
书目名称Data Stream Mining & Processing
副标题Third International
编辑Sergii Babichev,Dmytro Peleshko,Olena Vynokurova
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Data Stream Mining & Processing; Third International  Sergii Babichev,Dmytro Peleshko,Olena Vynokurova Conference proceedings 2020 Springer
描述This book constitutes the proceedings of the third International Conference on Data Stream and Mining and Processing, DSMP 2020, held in Lviv, Ukraine*, in August 2020..The 36 full papers presented in this volume were carefully reviewed and selected from 134 submissions. The papers are organized in topical sections of ​hybrid systems of computational intelligence; machine vision and pattern recognition; dynamic data mining & data stream mining; big data & data science using intelligent approaches..*The conference was held virtually due to the COVID-19 pandemic..
出版日期Conference proceedings 2020
关键词artificial intelligence; computer networks; computer vision; correlation analysis; image analysis; image
版次1
doihttps://doi.org/10.1007/978-3-030-61656-4
isbn_softcover978-3-030-61655-7
isbn_ebook978-3-030-61656-4Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Data Stream Mining & Processing影响因子(影响力)




书目名称Data Stream Mining & Processing影响因子(影响力)学科排名




书目名称Data Stream Mining & Processing网络公开度




书目名称Data Stream Mining & Processing网络公开度学科排名




书目名称Data Stream Mining & Processing被引频次




书目名称Data Stream Mining & Processing被引频次学科排名




书目名称Data Stream Mining & Processing年度引用




书目名称Data Stream Mining & Processing年度引用学科排名




书目名称Data Stream Mining & Processing读者反馈




书目名称Data Stream Mining & Processing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:53:29 | 显示全部楼层
Hybrid Deep Convolutional Neural Network with Multimodal Fusionand allows increasing informativeness of modality feature. The specific characteristics of proposed fusion operation is that the data of the same dimension without regard to the modality type are fed to the input of fusion subsystem. During the experiments, the high recognition efficiency was obtain
发表于 2025-3-22 04:21:19 | 显示全部楼层
Modeling and Forecasting of Innovative, Scientific and Technical Activity Indicators Under Unstable , density, and direction of Ukraine’s GDP dependence on specific indicators of innovative and scientific and technical activity are evaluated). The research proves public demand, evaluates current trends, and makes forecasts of the indicators of innovative and scientific and technical activity and t
发表于 2025-3-22 07:07:17 | 显示全部楼层
Technique of Metals Strength Properties Diagnostics Based on the Complex Use of Fuzzy Inference Systg is an optimal in terms of maximum value of heneral Harrington desiribility index and the hybrid neural network with two layers of neurons and triangular membership functions with combine algorithm of network training is an optimal one in terms of relative error of metals strength properties evalua
发表于 2025-3-22 10:43:12 | 显示全部楼层
发表于 2025-3-22 13:30:14 | 显示全部楼层
Methodological Support for the Management of Maintaining Financial Flows of External Tourism in Globand transformation of services. The implementation of the algorithm ensures the effect of minimizing losses and the maximum financial flow from the sale of specific tourism services from the source, representing the components of manufacturers of tourism products before the outbreak of the pandemic,
发表于 2025-3-22 20:03:34 | 显示全部楼层
Expansion of the Capabilities of Chromatography-Mass Spectrometry Due to the Numerical Decompositiontion of a linear combination of orthogonal functions by the optimal linear associative memory (OLAM) method gives a satisfactory result even if the noise level is three times higher than the useful signal level. The area of satisfactory application of OLAM for the decomposition of non-orthogonal fun
发表于 2025-3-23 00:27:19 | 显示全部楼层
发表于 2025-3-23 04:57:36 | 显示全部楼层
发表于 2025-3-23 07:46:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 19:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表