找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Stream Management; Processing High-Spee Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi Textbook 2016 Springer-Verlag Berlin Heidelbe

[复制链接]
查看: 34374|回复: 54
发表于 2025-3-21 17:51:08 | 显示全部楼层 |阅读模式
书目名称Data Stream Management
副标题Processing High-Spee
编辑Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi
视频video
概述Comprehensive introduction to the algorithmic and theoretical foundations of data stream processing – from basic mathematical models, algorithms, and analytics, and progressing to more advanced stream
丛书名称Data-Centric Systems and Applications
图书封面Titlebook: Data Stream Management; Processing High-Spee Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi Textbook 2016 Springer-Verlag Berlin Heidelbe
描述.This volume focuses on the theory and practice of .data stream management., and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains..A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processingalgorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of
出版日期Textbook 2016
关键词Data streams; Data model extensions; Database management system engines; Data mining; Sensor networks; XM
版次1
doihttps://doi.org/10.1007/978-3-540-28608-0
isbn_softcover978-3-662-56837-8
isbn_ebook978-3-540-28608-0Series ISSN 2197-9723 Series E-ISSN 2197-974X
issn_series 2197-9723
copyrightSpringer-Verlag Berlin Heidelberg 2016
The information of publication is updating

书目名称Data Stream Management影响因子(影响力)




书目名称Data Stream Management影响因子(影响力)学科排名




书目名称Data Stream Management网络公开度




书目名称Data Stream Management网络公开度学科排名




书目名称Data Stream Management被引频次




书目名称Data Stream Management被引频次学科排名




书目名称Data Stream Management年度引用




书目名称Data Stream Management年度引用学科排名




书目名称Data Stream Management读者反馈




书目名称Data Stream Management读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:40:21 | 显示全部楼层
发表于 2025-3-22 01:34:15 | 显示全部楼层
Quantiles and Equi-depth Histograms over Streams the 99-percentile, or the quartiles of a set are examples of quantile queries. Many database optimization problems involve approximate quantile computations over large data sets. Query optimizers use quantile estimates to estimate the size of intermediate results and choose an efficient plan among
发表于 2025-3-22 08:10:17 | 显示全部楼层
Join Sizes, Frequency Moments, and Applicationslem is at the heart of a wide variety of other problems, both in databases/data streams and beyond, including approximating range-query aggregates, quantiles, and heavy-hitter elements, and building approximate histograms and wavelet representations. Our discussion focuses on efficient, sketch-based
发表于 2025-3-22 09:13:50 | 显示全部楼层
Top-, Frequent Item Maintenance over Streamsthat occur most frequently in one pass over the data stream using a small amount of storage space. Such problems arise in a variety of settings. For example, a search engine might be interested in gathering statistics about its query stream and in particular, identifying the most popular queries. An
发表于 2025-3-22 16:33:30 | 显示全部楼层
发表于 2025-3-22 20:56:24 | 显示全部楼层
发表于 2025-3-22 22:31:53 | 显示全部楼层
Clustering Data Streamsch that, under some definition of “similarity,” similar items are in the same group and dissimilar items are in different groups. In this chapter we focus on clustering in a streaming scenario where a small number of data items are presented at a time and we cannot store all the data points. Thus, o
发表于 2025-3-23 01:54:38 | 显示全部楼层
Mining Decision Trees from Streams. Mining these continuous data streams brings unique opportunities, but also new challenges. We present a method that can semi-automatically enhance a wide class of existing learning algorithms so they can learn from such high-speed data streams in real time. The method works by sampling just enough
发表于 2025-3-23 05:56:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-29 19:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表