找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science, Learning by Latent Structures, and Knowledge Discovery; Berthold Lausen,Sabine Krolak-Schwerdt,Matthias Bö Conference procee

[复制链接]
查看: 13209|回复: 60
发表于 2025-3-21 17:48:32 | 显示全部楼层 |阅读模式
书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery
编辑Berthold Lausen,Sabine Krolak-Schwerdt,Matthias Bö
视频video
概述Covers theory, methods and applications of data analysis.Inspires for further research in the fields of Data Analysis, Learning by Latent Structures and Knowledge Discovery.Combines the intensive work
丛书名称Studies in Classification, Data Analysis, and Knowledge Organization
图书封面Titlebook: Data Science, Learning by Latent Structures, and Knowledge Discovery;  Berthold Lausen,Sabine Krolak-Schwerdt,Matthias Bö Conference procee
描述.This volume comprises papers dedicated to data science and the extraction of knowledge from many types of data: structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering and pattern recognition methods; strategies for modeling complex data and mining large data sets; applications of advanced methods in specific domains of practice. The contributions offer interesting applications to various disciplines such as psychology, biology, medical and health sciences; economics, marketing, banking and finance; engineering; geography and geology; archeology, sociology, educational sciences, linguistics and musicology; library science. The book contains the selected and peer-reviewed papers presented during the European Conference on Data Analysis (ECDA 2013) which was jointly held by the German Classification Society (GfKl) and the French-speaking Classification Society (SFC) in July 2013 at the University of Luxembourg..
出版日期Conference proceedings 2015
关键词Classification; Data Analysis; Data Science; Data Stream; Knowledge Organization; Latent Structures
版次1
doihttps://doi.org/10.1007/978-3-662-44983-7
isbn_softcover978-3-662-44982-0
isbn_ebook978-3-662-44983-7Series ISSN 1431-8814 Series E-ISSN 2198-3321
issn_series 1431-8814
copyrightSpringer-Verlag Berlin Heidelberg 2015
The information of publication is updating

书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery影响因子(影响力)




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery影响因子(影响力)学科排名




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery网络公开度




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery网络公开度学科排名




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery被引频次




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery被引频次学科排名




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery年度引用




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery年度引用学科排名




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery读者反馈




书目名称Data Science, Learning by Latent Structures, and Knowledge Discovery读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:21 | 显示全部楼层
发表于 2025-3-22 04:10:43 | 显示全部楼层
Jesica de Armas,Helena Ramalhinho,Stefan Voß similarity/dissimilarity measures: a similarity measure between concepts (elements) of a lattice and a dissimilarity measure between concept lattices defined on the same set of objects and attributes. Both measures are based on the overhanging relation previously introduced by the author, which are a cryptomorphism of lattices.
发表于 2025-3-22 05:46:31 | 显示全部楼层
Berthold Lausen,Sabine Krolak-Schwerdt,Matthias BöCovers theory, methods and applications of data analysis.Inspires for further research in the fields of Data Analysis, Learning by Latent Structures and Knowledge Discovery.Combines the intensive work
发表于 2025-3-22 09:10:09 | 显示全部楼层
发表于 2025-3-22 15:13:08 | 显示全部楼层
发表于 2025-3-22 19:56:16 | 显示全部楼层
发表于 2025-3-22 21:57:17 | 显示全部楼层
发表于 2025-3-23 03:59:32 | 显示全部楼层
发表于 2025-3-23 06:35:04 | 显示全部楼层
Arturo Pérez Rivera,Martijn Mesta. The prospective clusters can readily be distinguished from background noise and from other forms of outliers. A confirmatory Forward Search, involving control on the sizes of statistical tests, establishes precise cluster membership. The method performs as well as robust methods such as TCLUST.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 02:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表