找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science and Predictive Analytics; Biomedical and Healt Ivo D. Dinov Textbook 2023Latest edition The Editor(s) (if applicable) and The

[复制链接]
查看: 19815|回复: 54
发表于 2025-3-21 18:29:06 | 显示全部楼层 |阅读模式
书目名称Data Science and Predictive Analytics
副标题Biomedical and Healt
编辑Ivo D. Dinov
视频video
概述Transdisciplinary treatment integrates novel computational methods, statistical inference techniques, data science tools.Includes many hands-on demonstrations using imaging, environmental, health and
丛书名称The Springer Series in Applied Machine Learning
图书封面Titlebook: Data Science and Predictive Analytics; Biomedical and Healt Ivo D. Dinov Textbook 2023Latest edition The Editor(s) (if applicable) and The
描述This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings..Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in .Data Sc
出版日期Textbook 2023Latest edition
关键词big data; R; statistical computing; predictive analytics; data science; health analytics; machine learning
版次2
doihttps://doi.org/10.1007/978-3-031-17483-4
isbn_softcover978-3-031-17485-8
isbn_ebook978-3-031-17483-4Series ISSN 2520-1298 Series E-ISSN 2520-1301
issn_series 2520-1298
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Data Science and Predictive Analytics影响因子(影响力)




书目名称Data Science and Predictive Analytics影响因子(影响力)学科排名




书目名称Data Science and Predictive Analytics网络公开度




书目名称Data Science and Predictive Analytics网络公开度学科排名




书目名称Data Science and Predictive Analytics被引频次




书目名称Data Science and Predictive Analytics被引频次学科排名




书目名称Data Science and Predictive Analytics年度引用




书目名称Data Science and Predictive Analytics年度引用学科排名




书目名称Data Science and Predictive Analytics读者反馈




书目名称Data Science and Predictive Analytics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:06:34 | 显示全部楼层
发表于 2025-3-22 04:16:16 | 显示全部楼层
发表于 2025-3-22 07:25:15 | 显示全部楼层
发表于 2025-3-22 11:19:25 | 显示全部楼层
Textbook 2023Latest edition-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protoc
发表于 2025-3-22 13:14:37 | 显示全部楼层
发表于 2025-3-22 18:47:50 | 显示全部楼层
Basic Visualization and Exploratory Data Analytics,erent data structures, measuring sample statistics for quantitative variables, plotting sample histograms and model distribution functions, and scraping data from websites. In addition, we will cover exploratory data analytical (EDA) techniques, handling of incomplete (missing) data, and cohort-rebalancing of imbalanced groups.
发表于 2025-3-23 00:54:46 | 显示全部楼层
Linear Algebra, Matrix Computing, and Regression Modeling,ession modeling, ordinary least squares estimation, and other machine learning and artificial intelligence algorithms. These techniques will be demonstrated using simulated data, observed data of baseball players, and clinical data of heart attack patients.
发表于 2025-3-23 03:44:31 | 显示全部楼层
发表于 2025-3-23 08:37:25 | 显示全部楼层
Big Longitudinal Data Analysis,s analysis, autoregressive integrated moving average (ARIMA) models, structural equation models (SEM), linear mixed models, generalized estimating equations (GEE), recurrent neural networks (RNN), and long short-term memory (LSTM) networks.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 07:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表