找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science and Artificial Intelligence; First International Chutiporn Anutariya,Marcello M. Bonsangue Conference proceedings 2023 The Ed

[复制链接]
查看: 45745|回复: 55
发表于 2025-3-21 18:14:43 | 显示全部楼层 |阅读模式
书目名称Data Science and Artificial Intelligence
副标题First International
编辑Chutiporn Anutariya,Marcello M. Bonsangue
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Data Science and Artificial Intelligence; First International  Chutiporn Anutariya,Marcello M. Bonsangue Conference proceedings 2023 The Ed
描述This book constitutes the proceedings of the First International Conference, DSAI 2023, held in Bangkok, Thailand, during November 27–30, 2023..The 22 full papers and the 4 short papers included in this volume were carefully reviewed and selected from 70 submissions. This volume focuses on ideas, methodologies, and cutting-edge research that can drive progress and foster interdisciplinary collaboration in the fields of data science and artificial intelligence.
出版日期Conference proceedings 2023
关键词foundations of data science and artificial intelligence; data security; machine learning; deep learning
版次1
doihttps://doi.org/10.1007/978-981-99-7969-1
isbn_softcover978-981-99-7968-4
isbn_ebook978-981-99-7969-1Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Data Science and Artificial Intelligence影响因子(影响力)




书目名称Data Science and Artificial Intelligence影响因子(影响力)学科排名




书目名称Data Science and Artificial Intelligence网络公开度




书目名称Data Science and Artificial Intelligence网络公开度学科排名




书目名称Data Science and Artificial Intelligence被引频次




书目名称Data Science and Artificial Intelligence被引频次学科排名




书目名称Data Science and Artificial Intelligence年度引用




书目名称Data Science and Artificial Intelligence年度引用学科排名




书目名称Data Science and Artificial Intelligence读者反馈




书目名称Data Science and Artificial Intelligence读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:58:26 | 显示全部楼层
发表于 2025-3-22 03:56:54 | 显示全部楼层
发表于 2025-3-22 05:27:19 | 显示全部楼层
A Modified Hybrid RBF-BP Network Classifier for Nonlinear Estimation/Classification and Its Applicat[., .] is proposed. The modified hybrid RBF-BP network is formulated as an adaptive incremental learning algorithm for a single-layer RBF hidden neuron layer. The algorithm uses a density clustering approach to determine the number of RBF hidden neurons and it maintains the self-learning process of
发表于 2025-3-22 12:03:49 | 显示全部楼层
发表于 2025-3-22 16:09:03 | 显示全部楼层
Exploration of the Feasibility and Applicability of Domain Adaptation in Machine Learning-Based Codee to limited choices of the publicly available datasets, most of the machine learning-based classifiers were trained by the earlier versions of open-source projects that no longer represent the characteristics and properties of modern programming languages. Our experiments exhibit the feasibility an
发表于 2025-3-22 17:05:48 | 显示全部楼层
Web Usage Mining for Determining a Website’s Usage Pattern: A Case Study of Government Websiteyze a website’s usage. This study examined web usage mining to discover online users’ usage patterns and used the results to redesign and improve the government website. This study aims to help online customers obtain a better experience. A dataset was collected from the Metropolitan Electricity Aut
发表于 2025-3-23 00:12:15 | 显示全部楼层
Deep-Learning-Based LSTM Model for Predicting a Tidal River’s Water Levels: A Case Study of the Kapuing method to forecast the water level dynamics of the Kapuas Kecil River and determine the optimal window size for precise predictions. Our results reveal an optimal window size of 336 h (equivalent to 14 days) for water level prediction using LSTM in this coastal region. Using this optimal window
发表于 2025-3-23 01:22:26 | 显示全部楼层
Data Augmentation for EEG Motor Imagery Classification Using Diffusion Model brain-computer interfaces (BCIs). However, due to the limited amount of available data, overfitting is a common problem, especially when using a deep-learning classifier. One way to address this is by performing data augmentation. In this paper, we investigate the efficacy of the diffusion model as
发表于 2025-3-23 06:12:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 00:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表