找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science Fundamentals for Python and MongoDB; David Paper Book 2018 David Paper 2018 Data Science.Simulation.Monte Carlo Simulation.Li

[复制链接]
楼主: digestive-tract
发表于 2025-3-25 05:46:37 | 显示全部楼层
Book 2018ides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. .The book is self-contain
发表于 2025-3-25 11:02:53 | 显示全部楼层
A focused and easy-to-read fundamentals bookBuild the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learn
发表于 2025-3-25 11:50:14 | 显示全部楼层
发表于 2025-3-25 17:43:41 | 显示全部楼层
发表于 2025-3-25 23:32:55 | 显示全部楼层
发表于 2025-3-26 03:55:49 | 显示全部楼层
Linear Algebra,. Practically every area of modern science approximates modeling equations with linear algebra. In particular, data science relies on linear algebra for machine learning, mathematical modeling, and dimensional distribution problem solving.
发表于 2025-3-26 08:05:02 | 显示全部楼层
Gradient Descent,iteratively move toward a set of parameter values that minimize the function. Iterative minimization is achieved using calculus by taking steps in the negative direction of the function’s gradient. GD is important because optimization is a big part of machine learning. Also, GD is easy to implement,
发表于 2025-3-26 11:15:11 | 显示全部楼层
Working with Data,hat needs to be done. The 2nd step is to gather data. The 3rd step is to wrangle (munge) data, which is critical. Wrangling is getting data into a form that is useful for machine learning and other data science problems. Of course, wrangled data will probably have to be cleaned. The 4th step is to v
发表于 2025-3-26 15:34:28 | 显示全部楼层
发表于 2025-3-26 18:00:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 00:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表