找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science; 8th International Co Yang Wang,Guobin Zhu,Zeguang Lu Conference proceedings 2022 The Editor(s) (if applicable) and The Author

[复制链接]
查看: 51826|回复: 57
发表于 2025-3-21 16:50:34 | 显示全部楼层 |阅读模式
书目名称Data Science
副标题8th International Co
编辑Yang Wang,Guobin Zhu,Zeguang Lu
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Data Science; 8th International Co Yang Wang,Guobin Zhu,Zeguang Lu Conference proceedings 2022 The Editor(s) (if applicable) and The Author
描述.This two volume set (CCIS 1628 and 1629) constitutes the refereed proceedings of the 8th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2022 held in Chengdu, China, in  August, 2022...The 65 full papers and 26 short papers presented in these two volumes were carefully reviewed and selected from 261 submissions. The papers are organized in topical sections on: Big Data Mining and Knowledge Management; Machine Learning for Data Science; Multimedia Data Management and Analysis..
出版日期Conference proceedings 2022
关键词artificial intelligence; communication systems; computer hardware; computer networks; computer systems; c
版次1
doihttps://doi.org/10.1007/978-981-19-5194-7
isbn_softcover978-981-19-5193-0
isbn_ebook978-981-19-5194-7Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Data Science影响因子(影响力)




书目名称Data Science影响因子(影响力)学科排名




书目名称Data Science网络公开度




书目名称Data Science网络公开度学科排名




书目名称Data Science被引频次




书目名称Data Science被引频次学科排名




书目名称Data Science年度引用




书目名称Data Science年度引用学科排名




书目名称Data Science读者反馈




书目名称Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:32:31 | 显示全部楼层
发表于 2025-3-22 01:13:56 | 显示全部楼层
发表于 2025-3-22 08:09:55 | 显示全部楼层
https://doi.org/10.1007/978-3-319-56585-9extraction of essential data and the modeling strategy chosen. The data of the CTR task are often very sparse, and Factorization Machines (FMs) are a class of general predictors working effectively with it. However, the performance of FMs can be limited by the fixed feature representation and the sa
发表于 2025-3-22 11:02:06 | 显示全部楼层
Nikolay Konstantinov,Sergey Dorichenkots at combining low-order and high-order functions. However, they ignore the importance of the attention mechanism for learning input features. The ECABiNet model is proposed in this article to enhance the performance of CTR. On the one hand, the ECABiNet model can learn the importance of features d
发表于 2025-3-22 13:26:21 | 显示全部楼层
发表于 2025-3-22 20:15:46 | 显示全部楼层
发表于 2025-3-22 22:35:44 | 显示全部楼层
Nikolay Konstantinov,Sergey Dorichenkoflow graphs have attracted much attention since they can deal with the obfuscation problem to a certain extent. Many malware classification methods based on data flow graphs have been proposed. Some of them are based on user-defined features or graph similarity of data flow graphs. Graph neural netw
发表于 2025-3-23 04:55:47 | 显示全部楼层
https://doi.org/10.1007/978-3-030-24933-5 and cannot obtain satisfactory results in some scenarios. In this paper, we design a semisupervised time series anomaly detection algorithm based on metric learning. The algorithm model mines the features in the time series from the perspectives of the time domain and frequency domain. Furthermore,
发表于 2025-3-23 09:30:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-30 16:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表