找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science; 7th International Co Jianchao Zeng,Pinle Qin,Zeguang Lu Conference proceedings 2021 Springer Nature Singapore Pte Ltd. 2021 a

[复制链接]
查看: 16855|回复: 57
发表于 2025-3-21 19:03:57 | 显示全部楼层 |阅读模式
书目名称Data Science
副标题7th International Co
编辑Jianchao Zeng,Pinle Qin,Zeguang Lu
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Data Science; 7th International Co Jianchao Zeng,Pinle Qin,Zeguang Lu Conference proceedings 2021 Springer Nature Singapore Pte Ltd. 2021 a
描述This two volume set (CCIS 1451 and 1452) constitutes the refereed proceedings of the 7th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2021 held in Taiyuan, China, in September 2021..The 81 papers presented in these two volumes were carefully reviewed and selected from 256 submissions. The papers are organized in topical sections on big data management and applications; social media and recommendation systems; infrastructure for data science; basic theory and techniques for data science; machine learning for data science; multimedia data management and analysis; ​social media and recommendation systems; data security and privacy; applications of data science; education research, methods and materials for data science and engineering; research demo..
出版日期Conference proceedings 2021
关键词access control; artificial intelligence; authentication; computer hardware; computer networks; computer s
版次1
doihttps://doi.org/10.1007/978-981-16-5943-0
isbn_softcover978-981-16-5942-3
isbn_ebook978-981-16-5943-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

书目名称Data Science影响因子(影响力)




书目名称Data Science影响因子(影响力)学科排名




书目名称Data Science网络公开度




书目名称Data Science网络公开度学科排名




书目名称Data Science被引频次




书目名称Data Science被引频次学科排名




书目名称Data Science年度引用




书目名称Data Science年度引用学科排名




书目名称Data Science读者反馈




书目名称Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:16:35 | 显示全部楼层
Further topics in competing risksnal neural models obtained impressive performance on standard benchmarks, they often encounter performance degradation when being applied to knowledge-intensive domains like medicine and science. To address this problem and further fill the knowledge gap, we present a simple Evidence-Based Inference
发表于 2025-3-22 04:04:33 | 显示全部楼层
发表于 2025-3-22 04:37:48 | 显示全部楼层
发表于 2025-3-22 11:29:25 | 显示全部楼层
https://doi.org/10.1057/9780230604285otential public opinion information from online reviews has a certain value for the government to clarify the next work direction. In this paper, the event evolution graph is designed to make COVID-19 network public opinion prediction. The causal relationship was extracted in the network reviews aft
发表于 2025-3-22 13:15:24 | 显示全部楼层
发表于 2025-3-22 17:23:29 | 显示全部楼层
发表于 2025-3-22 23:01:03 | 显示全部楼层
发表于 2025-3-23 02:53:38 | 显示全部楼层
Competing on Supply Chain Qualityroposed using visual annotation to interpret the internal structure of CNN from the semantic perspective. First, filters are screened in the high layers of the CNN. For a certain category, the important filters are selected by their activation values, frequencies and classification contribution. The
发表于 2025-3-23 05:40:14 | 显示全部楼层
Competing on Supply Chain Quality provide four types of explanations including logical rules, revealing hidden semantics, sensitivity analysis, and providing examples as prototypes. In this paper, an interpretability method is proposed for revealing semantic representations at hidden layers of CNNs through lightweight annotation by
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 17:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表