找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Preprocessing in Data Mining; Salvador García,Julián Luengo,Francisco Herrera Book 2015 Springer International Publishing Switzerland

[复制链接]
查看: 51397|回复: 46
发表于 2025-3-21 19:29:29 | 显示全部楼层 |阅读模式
书目名称Data Preprocessing in Data Mining
编辑Salvador García,Julián Luengo,Francisco Herrera
视频videohttp://file.papertrans.cn/263/262990/262990.mp4
概述Covers the set of techniques under the umbrella of data preprocessing in data mining and machine learning.A comprehensive book devoted completely to preprocessing in data mining.Written by experts in
丛书名称Intelligent Systems Reference Library
图书封面Titlebook: Data Preprocessing in Data Mining;  Salvador García,Julián Luengo,Francisco Herrera Book 2015 Springer International Publishing Switzerland
描述.Data Preprocessing for Data Mining. addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data..This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed
出版日期Book 2015
关键词Data Mining; Data Preparation; Data Preprocessing; Data Reduction; Discretization; Feature Selection; Inst
版次1
doihttps://doi.org/10.1007/978-3-319-10247-4
isbn_softcover978-3-319-37731-5
isbn_ebook978-3-319-10247-4Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Data Preprocessing in Data Mining影响因子(影响力)




书目名称Data Preprocessing in Data Mining影响因子(影响力)学科排名




书目名称Data Preprocessing in Data Mining网络公开度




书目名称Data Preprocessing in Data Mining网络公开度学科排名




书目名称Data Preprocessing in Data Mining被引频次




书目名称Data Preprocessing in Data Mining被引频次学科排名




书目名称Data Preprocessing in Data Mining年度引用




书目名称Data Preprocessing in Data Mining年度引用学科排名




书目名称Data Preprocessing in Data Mining读者反馈




书目名称Data Preprocessing in Data Mining读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:42 | 显示全部楼层
发表于 2025-3-22 04:19:29 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-0429-6ion (Sect. .) and the latest Machine Learning based approaches which use algorithms for classification or regression in order to accomplish the imputation (Sect. .). Finally a comparative experimental study will be carried out in Sect. ..
发表于 2025-3-22 07:21:23 | 显示全部楼层
发表于 2025-3-22 08:53:38 | 显示全部楼层
发表于 2025-3-22 14:07:00 | 显示全部楼层
发表于 2025-3-22 20:38:34 | 显示全部楼层
发表于 2025-3-22 22:01:01 | 显示全部楼层
Data Sets and Proper Statistical Analysis of Data Mining Techniques,to alleviate the problematic associated to the validation of any supervised method as well as the details of the performance measures that will be used in the rest of the book. Section . takes a tour of the most common statistical techniques required in the literature to provide meaningful and corre
发表于 2025-3-23 02:39:10 | 显示全部楼层
Dealing with Missing Values,ion (Sect. .) and the latest Machine Learning based approaches which use algorithms for classification or regression in order to accomplish the imputation (Sect. .). Finally a comparative experimental study will be carried out in Sect. ..
发表于 2025-3-23 07:47:33 | 显示全部楼层
Dealing with Noisy Data,rom this point on, the two main approaches carried out in the literature are described. On the first hand, modifying and cleaning the data is studied in Sect. ., whereas designing noise robust Machine Learning algorithms is tackled in Sect. .. An empirical comparison between the latest approaches in
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-19 02:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表