找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Mining in Crystallography; D. W. M. Hofmann,Liudmila N. Kuleshova Book 2010 Springer-Verlag Berlin Heidelberg 2010 Data Basis.Protein

[复制链接]
查看: 16319|回复: 35
发表于 2025-3-21 17:26:36 | 显示全部楼层 |阅读模式
书目名称Data Mining in Crystallography
编辑D. W. M. Hofmann,Liudmila N. Kuleshova
视频video
概述This series presents critical reviews of the present position and future trends in modern chemical research concerned with chemical structure and bonding.Short and concise reports, each written by the
丛书名称Structure and Bonding
图书封面Titlebook: Data Mining in Crystallography;  D. W. M. Hofmann,Liudmila N. Kuleshova Book 2010 Springer-Verlag Berlin Heidelberg 2010 Data Basis.Protein
描述Humans have been “manually” extracting patterns from data for centuries, but the increasing volume of data in modern times has called for more automatic approaches. Early methods of identifying patterns in data include Bayes’ theorem (1700s) and Regression analysis (1800s). The proliferation, ubiquity and incre- ing power of computer technology has increased data collection and storage. As data sets have grown in size and complexity, direct hands-on data analysis has - creasingly been augmented with indirect, automatic data processing. Data mining has been developed as the tool for extracting hidden patterns from data, by using computing power and applying new techniques and methodologies for knowledge discovery. This has been aided by other discoveries in computer science, such as Neural networks, Clustering, Genetic algorithms (1950s), Decision trees (1960s) and Support vector machines (1980s). Data mining commonlyinvolves four classes of tasks: • Classi cation: Arranges the data into prede ned groups. For example, an e-mail program might attempt to classify an e-mail as legitimate or spam. Common algorithmsinclude Nearest neighbor,Naive Bayes classi er and Neural network. • Clus
出版日期Book 2010
关键词Data Basis; Protein Structure; Secondary structure; clustering; crystallography; data analysis; data minin
版次1
doihttps://doi.org/10.1007/978-3-642-04759-6
isbn_softcover978-3-642-26161-9
isbn_ebook978-3-642-04759-6Series ISSN 0081-5993 Series E-ISSN 1616-8550
issn_series 0081-5993
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Data Mining in Crystallography影响因子(影响力)




书目名称Data Mining in Crystallography影响因子(影响力)学科排名




书目名称Data Mining in Crystallography网络公开度




书目名称Data Mining in Crystallography网络公开度学科排名




书目名称Data Mining in Crystallography被引频次




书目名称Data Mining in Crystallography被引频次学科排名




书目名称Data Mining in Crystallography年度引用




书目名称Data Mining in Crystallography年度引用学科排名




书目名称Data Mining in Crystallography读者反馈




书目名称Data Mining in Crystallography读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:53:06 | 显示全部楼层
发表于 2025-3-22 00:25:23 | 显示全部楼层
0081-5993 e data into prede ned groups. For example, an e-mail program might attempt to classify an e-mail as legitimate or spam. Common algorithmsinclude Nearest neighbor,Naive Bayes classi er and Neural network. • Clus978-3-642-26161-9978-3-642-04759-6Series ISSN 0081-5993 Series E-ISSN 1616-8550
发表于 2025-3-22 06:55:32 | 显示全部楼层
发表于 2025-3-22 11:38:34 | 显示全部楼层
Data Mining for Protein Secondary Structure Prediction, less successful if such fragments are absent in the fragments database. Recently we have improved secondary structure predictions further by combining FDM with classical GOR V (Kloczkowski A, Ting KL, Jernigan RL, Garnier J (2002a) Combining the GOR V algorithm with evolutionary information for pro
发表于 2025-3-22 13:26:07 | 显示全部楼层
Book 2010 (1980s). Data mining commonlyinvolves four classes of tasks: • Classi cation: Arranges the data into prede ned groups. For example, an e-mail program might attempt to classify an e-mail as legitimate or spam. Common algorithmsinclude Nearest neighbor,Naive Bayes classi er and Neural network. • Clus
发表于 2025-3-22 17:17:53 | 显示全部楼层
Data Mining in Crystallography978-3-642-04759-6Series ISSN 0081-5993 Series E-ISSN 1616-8550
发表于 2025-3-22 23:50:40 | 显示全部楼层
发表于 2025-3-23 03:00:18 | 显示全部楼层
978-3-642-26161-9Springer-Verlag Berlin Heidelberg 2010
发表于 2025-3-23 07:20:05 | 显示全部楼层
Young Dual Language Learners in China into a model describing a particular process or natural phenomenon. Requirements with respect to the predictivity and the generality of the resulting models are usually significantly higher than in other application domains. Therefore, in the use of data mining in the sciences, and crystallography
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 23:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表